Робочий цикл теплового двигуна

Робочий цикл теплового двигуна thumbnail

Устройство, имеющее способность преобразовывать полученную теплоту в механическую работу носит название теплового двигателя. В таких машинах механическая работа совершается в процессе расширения вещества, называющегося рабочим телом. Его роль обычно исполняют газообразные вещества, вроде паров бензина, воздуха и водяного пара.

Определение 1

Рабочее тело приобретает или отдает тепловую энергию при теплообмене с телами, которые имеют внушительный запас внутренней энергии. Такие тела называют тепловыми резервуарами.

Исходя из первого закона термодинамики, можно сделать вывод, что полученное газом количество теплоты Q полностью преобразуется в работу A в условиях изотермического процесса, при котором внутренняя энергия не претерпевает изменений ( Δ U = 0 ) :

A = Q

Однако, подобный однократный акт превращения теплоты в работу для техники не представляет интереса. Существующие тепловые двигатели, такие как паровые машины, двигатели внутреннего сгорания и им подобные, работают циклически. Необходимо периодическое повторение процесса теплопередачи и преобразования полученной теплоты в работу. Чтобы данное условие выполнялось, рабочее тело должно совершать круговой процесс или же термодинамический цикл, при котором исходное состояние с периодически восстанавливается. На рисунке 3 . 11 . 1 в виде диаграммы ( p , V ) газообразного рабочего тела с помощью замкнутых кривых проиллюстрированы круговые. В условиях расширения газ производит положительную работу A 1 , эквивалентную площади под кривой a b c . При сжатии газ совершает отрицательную работу A 2 , равную по модулю площади под кривой c d a . Полная работа за цикл A = A 1 + A 2 на диаграмме ( p , V ) равняется площади цикла. Работа A положительна, в том случае, если цикл проходит по часовой стрелке, и A отрицательна, когда цикл проходит в противоположном направлении.

Тепловые двигатели. Термодинамические циклы. Цикл Карно

Рисунок 3 . 11 . 1 . Круговой процесс на диаграмме ( p , V ) . a b c – кривая расширения, c d a – кривая сжатия. Работа A в круговом процессе равна площади фигуры a b c d .

Все круговые процессы обладают общей чертой. Они не могут привестись в действие при контакте рабочего тела только с одним тепловым. Их минимальное число должно быть равным двум.

Определение 2

Тепловой резервуар, обладающий более высоким значением температуры, носит название нагревателя, а с более низким – холодильника.

Рабочее тело при совершении кругового процесса получает от нагревателя некоторую теплоту Q 1 > 0 и теряет, отдавая холодильнику, количество теплоты Q 2 < 0 . Для полного полученного рабочим телом за цикл количества теплоты Q справедливо следующее выражение:

Q = Q 1 + Q 2 = Q 1 – Q 2 .

Совершая цикл, рабочее тело приходит в свое первоначальное состояние, из чего можно сделать вывод, что изменение его внутренней энергии равняется Δ U = 0 . Основываясь на первом законе термодинамики, запишем:

∆ U = Q – A = 0 .

Из этого следует:

A = Q = Q 1 – Q 2 .

Работа A , которую рабочее тело совершает за цикл, эквивалентна полученному за этот же цикл количеству теплоты Q .

Определение 3

Коэффициентом полезного действия или же КПД η теплового двигателя называют отношение работы A к полученному рабочим телом за цикл от нагревателя количеству теплоты Q 1 , то есть:

η = A Q 1 = Q 1 – Q 2 Q 1 .

Тепловые двигатели. Термодинамические циклы. Цикл Карно

Рисунок 3 . 11 . 2 . Модель термодинамических циклов.

Коэффициент полезного действия теплового двигателя демонстрирует, какая доля тепловой энергии, которую получило рабочее тело от нагревателя, преобразовалась в полезную работу. Оставшаяся часть ( 1 – η ) была без пользы передана холодильнику. Коэффициент полезного действия тепловой машины не может быть больше единицы η < 1 . На рисунке 3 . 11 . 3 проиллюстрирована энергетическая схема тепловой машины.

Тепловые двигатели. Термодинамические циклы. Цикл Карно

Рисунок 3 . 11 . 3 . Энергетическая схема тепловой машины: 1 – нагреватель; 2 – холодильник; 3 – рабочее тело, совершающее круговой процесс. Q 1 > 0 , A > 0 , Q 2 < 0 ; T 1 > T 2 .

Виды тепловых двигателей

В технике свое применение находят двигатели, использующие круговые процессы. Рисунок 3 . 11 . 3 демонстрирует нам циклы, применяемые в бензиновом карбюраторном и в дизельном двигателях. Они оба в качестве рабочего тела используют смесь паров бензина или дизельного топлива с воздухом. Цикл карбюраторного двигателя внутреннего сгорания включает в себя две изохоры ( 1 – 2 , 3 – 4 ) и две адиабаты ( 2 – 3 , 4 – 1 ) , дизельного двигателя -две адиабаты ( 1 – 2 , 3 – 4 ) , одну изобару ( 2 – 3 ) и одну изохору ( 4 – 1 ) . Реальный КПД (коэффициент полезного действия) у карбюраторного двигателя составляет около 30 % , у дизельного двигателя – приблизительно 40 % .

Виды тепловых двигателей

Рисунок 3 . 11 . 4 . Циклы карбюраторного двигателя внутреннего сгорания ( 1 ) и дизельного двигателя ( 2 ) .

Цикл Карно

Круговой процесс, изображенный на рисунке 3 . 11 . 5 , состоящий из двух изотерм и двух адиабат был назван циклом Карно в честь открывшего его в 1824 году французского инженера. Данное явление впоследствии оказало колоссальное влияние на развитие учения о тепловых процессах.

Цикл Карно

Рисунок 3 . 11 . 5 . Цикл Карно.

Находящийся в цилиндре, под поршнем, газ совершает цикл Карно. На участке изотермы ( 1 – 2 ) он приводится в тепловой контакт с нагревателем, обладающим некоторой температурой T 1 . Газ изотермически расширяется, при этом к нему подводится эквивалентное совершенной работе A 12 количество теплоты Q 1 = A 12 . После этого на участке адиабаты ( 2 – 3 ) газ помещается в адиабатическую оболочку и продолжает процесс расширения при отсутствующем теплообмене. На данной части цикла газ совершает работу A 23 > 0 . Его температура при адиабатическом расширении снижается до величины T 2 . На идущем следующим участке изотермы ( 3 – 4 ) газ приводится в тепловой контакт с холодильником в условиях температуры T 2 < T 1 . Производится процесс изотермического сжатия. Газом совершается некоторая работа A 34 < 0 и отдается тепло Q 2 < 0 , эквивалентное произведенной им работе A 34 . Его внутренняя энергия не претерпевает изменений. На последнем оставшемся участке адиабатического сжатия газ снова помещают в адиабатическую оболочку. При сжатии его температура вырастает до величины T 1 , также совершается работа A 41 < 0 . совершаемая газом за цикл полная работа A эквивалентна сумме работ на отдельных участках:

Читайте также:  График циклов тепловых двигателей

A = A 12 + A 23 + A 34 + A 41 .

На диаграмме ( p , V ) данная работа равняется площади цикла.

Процессы на любом из участков цикла Карно квазистатичны. Например, оба участка 1 – 2 и 3 – 4 , относящихся к изотермическим, производятся при пренебрежительно малой разности температур рабочего тела, то есть газа, и теплового резервуара, будь то нагреватель или холодильник.

Исходя из первого закона термодинамики, можно заявить, что работа газа в условиях адиабатического расширения или сжатия эквивалентна падению значения Δ U его внутренней энергии. Для 1 моля газа верно следующее выражение:

A = – ∆ U = – C V ( T 2 – T 1 ) ,

в котором T 1 и T 2 представляют собой начальную и конечную температуры рабочего тела.

Из этого следует, что работы, совершаемые газом на двух адиабатических участках цикла Карно, противоположны по знакам и одинаковы по модулю:

A 23 = – A 41 .

Коэффициент полезного действия η цикла Карно может рассчитываться с помощью следующих соотношений:

η = A Q 1 = A 12 + A 34 Q 12 = Q 1 – Q 2 Q 1 = 1 – Q 2 Q 1 .

С. Карно выразил коэффициент полезного действия цикла через величины температур холодильника T 2 и нагревателя T 1 :

η = T 1 – T 2 T 1 = 1 – T 2 T 1 .

Цикл Карно примечателен тем, что ни на одном из его участков тела, обладающие различными температурами, не соприкасаются. Любое состояние рабочего тела в цикле является квазиравновесным, что означает его бесконечную близость к состоянию теплового равновесия с окружающими объектами, то есть тепловыми резервуарами или же термостатами. В цикле Карно исключен теплообмен в условиях конечной разности температур рабочего тела и окружающей среды (термостатов), если тепло имеет возможность переходить без совершения работы. По этой причине любые другие возможные круговые процессы проигрывают ему в эффективности при заданных температурах нагревателя и холодильника:

η К а р н о = η m a x

Цикл Карно

Рисунок 3 . 11 . 6 . Модель цикла Карно.

Каждый участок цикла Карно и цикл в целом могут проходиться в обоих направлениях.

Определение 4

Обход цикла по часовой стрелке соответствует тепловому двигателю, в котором полученное рабочим телом тепло частично преобразуется в полезную работу. Обход против часовой стрелки соответствует холодильной машине, где некое количество теплоты отходит от холодного резервуара и передается горячему резервуару за счет совершения внешней работы. Именно поэтому идеальное устройство, работающее по циклу Карно, носит название обратимой тепловой машины.

В реально существующих холодильных машинах применяются разные циклические процессы. Любой холодильный цикл на диаграмме ( p , V ) обходятся против часовой стрелки. На рисунке 3 . 11 . 7 проиллюстрирована энергетическая схема холодильной машины.

Цикл Карно

Рисунок 3 . 11 . 7 . Энергетическая схема холодильной машины. Q 1 < 0 , A > 0 , Q 2 > 0 , T 1 > T 2 .

Работающее по холодильному циклу устройство может обладать двояким предназначением.

Определение 5

Если полезным эффектом является отбор некоторого количества тепла Q 2 от охлаждаемых тел, к примеру, от продуктов в камере холодильника, то такое устройство является обычным холодильником.

Эффективность работы холодильника может быть охарактеризована следующим отношением:

β x = Q 2 A .

Таким образом, эффективность работы холодильника представляет собой количество тепла, отбираемого от охлаждаемых тел на 1 д ж о у л ь затраченной работы. В условиях подобного определения β х может быть, как больше, так и меньше единицы. Для обращенного цикла Карно справедливо выражение:

β x = T 2 T 1 – T 2 .

Определение 6

В случае, когда полезным эффектом является передача некоего количества тепла

| Q 1 | нагреваемым телам, чьим примером может выступать воздух в помещении, то такое устройство называется тепловым насосом.

Эффективность β Т теплового насоса может быть определена с помощью отношения:

β т = Q 1 A .

То есть она может определяться количеством теплоты, передаваемым более теплым телам на 1 д ж о у л ь затраченной работы. Из первого закона термодинамики следует:

Q 1 > A .

Следовательно, β Т всегда больше единицы. Для обращенного цикла Карно справедливо следующее выражение:

β т = 1 η = T 1 T 1 – T 2 .

Источник



Рабочим циклом называется совокупность периодически повторяющихся в определенной последовательности процессов, протекающих в каждом цилиндре двигателя, в результате которых тепловая энергия переходит в работу.

Тактом называется процесс, происходящий в цилиндре при перемещении поршня от одной мертвой точки к другой.

Если рабочий цикл совершается за четыре хода поршня, чему соответствует два оборота коленчатого вала, то двигатель с таким циклом называется четырехтактным. Каждый такт такого двигателя имеет свое наименование и свои особенности.

рабочий цикл двигателя

Рис.2. Рабочий цикл четырёхтактного дизеля: 1-топливный насос; 2-поршень; 3-форсунка; 4-воздухоочиститсль; 5-впускной клапан; 6-выпускной клапан; 7-цилиндр

Такт впуска. При перемещении поршня от ВМТ до НМТ над ним освобождается пространство, куда через открывающийся впускной клапан 5 (рис.2) поступает чистый воздух у дизеля или смесь воздуха с мелко распыленным бензином (горючая смесь). Поступивший свежий заряд смешивается с остатками отработавших газов от предыдущего такта (такая смесь называется рабочей). При подходе к НМТ давление в цилиндре вследствие сопротивления во впускном трубопроводе, ниже атмосферного и составляет 0,07…0,09. Температура газов в конце этого такта достигается 40…70°С у дизеля и 70…13О°С у карбюраторного двигателя.

Читайте также:  Циклы холодильной машины и теплового насоса

Такт сжатия. При перемещении поршня от НМТ к ВМТ впускной клапан закрывается и поступивший в цилиндр воздух или рабочая смесь сжимается, вследствие чего их температура и давление повышаются. Величина повышения давления и температуры определяется степенью сжатия двигателя. У дизеля температура в конце такта сжатия достигает 550…750°С, а давление 4…5МПа; у карбюраторного двигателя рабочая смесь нагревается до 300…430°, а давление составляет 0,8…1.5МПа.

Такт расширения. При подходе поршня к ВМТ в цилиндр дизеля через форсунку впрыскивается топливо, которое, перемещаясь с нагретым и сжатым воздухом, сгорает; при этом давление газов в цилиндре возрастает до 6…9 МПа, а их температура поднимается до 1800… 2000° С. Под действием давления расширяющихся газов поршень перемещается от ВМТ к НМТ. В конце этого такта температура газов понижается до 700…900° С, а давление до 0,3…0,5МПа.

В карбюраторном двигателе при подходе поршня к ВМТ сжатия горючая смесь воспламеняется от электрической искры, возникающей между электродами свечи, ввернутой в цилиндра. От сгорания смеси давление газов возрастает до 3,5…5 МПа, а температура до 2100…2400°. К концу такта расширения у карбюраторного двигателя температура газов снижается до 900…1200°, а давление до 0,3…0,35 МПа.

Такт выпуска. При перемещении поршня от НМТ к ВМТ открывается выпускной клапан, и отработавшие газы выталкиваются из цилиндра в атмосферу. При этом давление газов к концу такта снижается до 0,11…0,12 МПа, а температура до 500…700°С у дизеля и 300…400° у карбюраторного двигателя.

Таким образом, в четырехтактном двигателе только один такт расширения – ход поршня под действием давления газов поворачивает коленчатый вал и совершает полезную работу; этот ход называется рабочим. Остальные такты – впуска, сжатия и выпуска – называются вспомогательными. После такта выпуска рабочий цикл двигателя повторяется.

Источник

Процессы, протекающие в цилиндрах двигателя при его работе, повторяются циклично. Одним таким рабочим циклом считается совокупность тактов (впуск топливовоздушной смеси, сжатие, воспламенение и расширение газов, а также выпуск продуктов сгорания), обеспечивающая переход тепловой энергии, выделяемой при воспламенении одной порции смеси, непосредственно в работу. О том, что представляют собой рабочие циклы поршневых двигателей внутреннего сгорания, пойдет речь далее.

Что такое мертвые точки и такты ДВС

Количество этапов, входящих в один рабочий цикл ДВС (двигателя внутреннего сгорания), принято считать исходя из числа ходов поршня в цилиндре. Такие этапы получили название такты двигателя. Непосредственно ход поршня определяется его перемещением из одной крайней точки в другую. Они получили наименование мертвые, поскольку если в такой точке произойдет остановка поршня, он не сможет начать движение без внешнего воздействия. Простыми словами мертвые точки – это позиции, при которых движение в текущем направлении поршня прекращается и он начинает обратный ход.

Мертвые точки и ход поршня ДВС

Существуют две мертвые точки:

  • Нижняя (НМТ) – положение, при котором расстояние между поршнем и осью вращения коленвала минимально.
  • Верхняя (ВМТ) – положение, при котором цилиндр находится на максимальном удалении от оси вращения коленвала двигателя.

В англоязычной документации ВМТ обозначается как TDC (Top Dead Centre), А НМТ – BDC ( Dead Centre).

Существуют двигатели, рабочий цикл которых может состоять из двух, а также из четырех тактов. Исходя из этого их разделяют на двухтактные и четырехтактные моторы.

Как работает четырехтактный двигатель

Конструктивно рабочий цикл типового четырехтактного агрегата обеспечивается работой следующих элементов:

  • цилиндр;
  • поршень – выполняет возвратно-поступательные движения внутри цилиндра;
  • клапан впуска – управляет процессом подачи топливовоздушной смеси в камеру сгорания;
  • клапан выпуска – управляет процессом выброса отработавших газов из цилиндра;
  • свеча зажигания – осуществляет воспламенение образовавшейся топливовоздушной смеси;
  • коленчатый вал;
  • распределительный вал – управляет открытием и закрытием клапанов;
  • ременной или цепной привод;
  • кривошипно-шатунный механизм – переводит движение поршня во вращение коленчатого вала.

Рабочий цикл четырехтактного двигателя

Рабочий цикл такого механизма состоит из четырех тактов, в ходе которых реализуются следующие процессы:

  1. Впуск (нагнетание топлива и воздуха). В начале цикла поршень находится в ВМТ. В момент, когда коленвал начинает вращаться, он воздействует на поршень и переводит его в НМТ. Это приводит к образованию разрежения в камере цилиндра. Распредвал воздействует на клапан впуска, постепенно открывая его. Когда поршень оказывается в крайнем положении клапан полностью открыт, в результате чего происходит интенсивное нагнетание топлива и воздуха в камеру цилиндра.
  2. Сжатие (увеличение давления горючей смеси). На втором этапе поршень начинает обратное перемещение к верхней мертвой точке такта сжатия. Коленвал совершает еще один поворот, а оба клапана полностью закрыты. Внутреннее давление увеличивается до величины 1,8 МПа и повышается температура горючей смеси до 600 С°.
  3. Расширение (рабочий ход). При достижении верхней позиции поршнем в камере сгорания устанавливается максимальная компрессия до 5 МПа и срабатывает свеча зажигания. Это приводит к возгоранию смеси и увеличению температуры до 2500 С°. Давление и температура приводят к интенсивному воздействию на поршень, и он начинает вновь перемещаться к НМТ. Коленвал совершает еще поворот, и таким образом, тепловая энергия переходит в полезную работу. Распредвал открывает выпускной клапан, и при достижении поршнем НМТ он полностью раскрыт. В результате отработавшие газы начинают постепенно выходить из камеры, а давление и температура снижаются.
  4. Выпуск (удаление отработавших газов). Коленвал двигателя поворачивается, и поршень начинает движение в верхнюю точку. Это приводит к выталкиванию отработавших газов и еще большему снижению температуры и уменьшению давления до 0,1 МПа. Далее, начинается новый цикл, в ходе которого указанные процессы вновь повторяются.

В ходе каждого такта коленчатый вал двигателя совершает поворот на 180°. За полный рабочий цикл коленвал поворачивается на 720°.

Четырехтактный двигатель получил широкое распространение. Он может работать как с бензином, так и с дизельным топливом. Отличием рабочего цикла для дизеля является то, что воспламенение топливовоздушной смеси происходит не от искры, а от высокого давления и температуры в конечной точке такта сжатия.

Читайте также:  Круговой процесс тепловые двигатели цикл карно

Особенности работы двухтактных моторов

Основой того, чем отличается двухтактный двигатель от четырехтактного, можно назвать тот факт, что в первом за один рабочий цикл коленвал совершает два оборота, а во втором весь рабочий цикл укладывается в один оборот коленвала (360°). Поршень при этом совершает лишь два хода. Процессы, происходящие в камере сгорания в течение рабочего цикла у двухтактного мотора, не отличаются от четырехтактных, но впуск горючей смеси и выпуск отработавших газов выполняются одновременно с тактами сжатия и расширения.

Процесс одновременного удаления отработавших газов и нагнетания в цилиндр свежего заряда, происходящий в двухтактном двигателе, получил название продувка.

Рабочий цикл двухтактного двигателя

Принцип работы простейшего двухтактного двигателя заключается в следующем:

  1. Такт сжатия. В начале цикла поршень находится в НМТ и движется в положение ВМТ такта сжатия. При этом происходит перекрытие окна продувки (впуска), а затем канала выпуска. В момент, когда поршень закрывает окно выпуска, начинается сжатие горючей смеси, и в пространстве под поршнем возникает разрежение. Это обеспечивает нагнетание топлива в камеру через приоткрытый клапан впуска.
  2. Такт расширения (рабочего хода). Когда поршень приближается к ВМТ, происходит срабатывание свечи зажигания, и горючая смесь воспламеняется. Это провоцирует резкое повышение давления и температуры, в результате чего поршень начинает движение вниз. Таким образом, газы совершают полезную работу, а поршень при движении к НМТ увеличивает компрессию топливовоздушной смеси. С ростом давления клапан начинает закрываться и препятствует попаданию горючей смеси во впускной коллектор. При достижении поршнем выпускного окна, происходит открытие последнего, и отработавшие газы удаляются в систему выхлопа. Давление в камере снижается, а дальнейшее движение поршня открывает канал продувки и топливовоздушная смесь подается в камеру, вытесняя отработавшие газы.

В зависимости от того, как реализована система продувки в устройстве двухтактного двигателя, их разделяют на разные типы:

  • С контурной кривошипно-камерной продувкой. Горючая смесь подается в камеру цилиндра напрямую из картера двигателя. При этом она всасывается в момент движения поршня к ВМТ, а при движении поршня к НМТ обеспечивается продувка за счет избыточного давления.
  • С клапанно-щелевой продувкой. Применяется для одноцилиндровых двигателей. Газораспределение реализуется путем перекрытия окон, выполненных в стенке цилиндра.
  • С прямоточной продувкой. В такой конструкции впуск выполняется через специальные продувочные окна, выполненные по окружности цилиндра в его нижней части. В свою очередь, выпуск реализуется через выхлопной клапан.
  • С использованием продувочных насосов. Применяется на многоцилиндровых двухтактных двигателях. При этом воздух для продувки сжимается специальным компрессором.

В отличие от четырехтактного, двухтактный двигатель не имеет системы газораспределения. Не требуют такие конструкции и организации сложной системы смазки. С другой стороны, четырехтактные моторы более экономичны по расходу топлива, а также меньше подвержены вибрации и обеспечивают более чистый выхлоп.

Раз в неделю мы отправляем дайджест с самыми интересными новостями и полезными статьями про автомобили.

Название поля*

*

(1 оценок, среднее: 5,00 из 5)

Загрузка…

Источник