Онтогенез клетки жизненный цикл

Онтогенез клетки жизненный цикл thumbnail

У многоклеточного растительного организма образовавшиеся в результате митоза клетки имеют одинаковый набор генов, а следовательно, обладают одинаковыми наследственными свойствами. Из каждой из них может развиться целый организм. Свойство клеток реализовывать всю генетическую информацию, содержащуюся в хромосомах, обеспечивающую их дифференпировку, т.е. способность становиться клеткой любой ткани организма, и даже развитие до целого организма, называется тотипотентностью. Благодаря тотипотентности из зиготы в ходе своего онтогенеза (жизненного цикла) развивается многоклеточное растение со многими типами разных по строению и выполняемым функциям клеток.

Онтогенез (жизненный цикл) клетки — это развитие клетки от ее возникновения до следующего деления или отмирания. В нем можно выделить пять фаз: инициальную, фазу роста, фазу дифференциации, фазу зрелости, фазу старения, заканчивающуюся отмиранием клетки.

В инициальной фазе находятся клетки образовательных тканей (меристем), онтогенез которых совпадает с митотическим циклом. Среди них выделяют инициальные клетки, постоянно сохраняющие способность к делению, и производные инициальных клеток, деление которых ограничено определенным числом раз.

В фазу роста переходят клетки, переставшие делиться и остановившиеся в пресинтетическом периоде интерфазы. Объем таких клеток значительно увеличивается (иногда в 100 раз) в основном за счет увеличения объема вакуолей и формирования одной центральной вакуоли, окруженной цитоплазмой. Ядро регулирует деятельность клетки с помощью белков-ферментов.

У клеток, вступивших в фазу дифференциации, начинают образовываться структуры, специфические для клеток какой-либо постоянной ткани растения, в составе которой клетка будет функционировать в дальнейшем. В клетках фотосинтезирующей ткани развиваются хлоропласты, а у клеток механической ткани значительно утолщаются вторичные клеточные стенки.

Клетки, находящиеся в фазе зрелости, имеют хорошо выраженные особенности строения, отражающие их функции. Продолжительность этой фазы различна у клеток разных тканей. Клетки поглощающей ткани корня (ризодермы) живут всего несколько дней, клетки покровной ткани побега (эпидермы) — один вегетационный период, а клетки запасающих тканей могут прожить несколько лет.

Фаза старения клетки характеризуется ослаблением протекающих в ней жизненных процессов и прогрессирующим упрощением строения. Объем цитоплазмы уменьшается, а число органелл сокращается в результате их самопериваривания (работает лизосомный клеточный компартмент). В конечном итоге протопласт полностью отмирает и в результате автолиза исчезает — от клетки остается только ее стенка.

Таким образом, клетка растения, как и любая другая живая система, рождается, растет, приобретает специфическое строение, функционирует и отмирает в определенные сроки.

Важно подчеркнуть, что выход растительной клетки из митотического цикла, ее дифференциация и функционирование в качестве клетки постоянной ткани могут быть временными. В случае необходимости (при повреждении органов растения) клетки постоянных тканей дедифференцируются: у них исчезает центральная вакуоль и специфические органеллы (например пластиды). Эти клетки переходят в синтетический период интерфазы и полностью проходят свой клеточный цикл, образуя дочерние клетки, т.е. они возвращаются в инициальную фазу онтогенеза. Благодаря работе этих клеток нанесенные растению раны зарастают новыми постоянными тканями. Способность к дедифференциации — важное свойство растительных клеток, обеспечивающее регенерацию растения (восстановление из какой-либо отделенной части) и его вегетативное размножение.

Источник

Жизненный цикл клетки (клеточный цикл)

С момента появления клетки и до ее смерти в результате апоптоза (программируемой клеточной гибели) непрерывно продолжается
жизненный цикл клетки.

Фазы клеточного цикла

Здесь и в дальнейшем мы будем пользоваться генетической формулой клетки, где “n” – число хромосом, а “c” – число ДНК (хроматид).
Напомню, что в состав каждой хромосомы может входить как одна молекула ДНК (одна хроматида) (nc), либо две (n2c).

Генетическая формула клетки

Клеточный цикл включает в себя несколько этапов: деление (митоз), постмитотический (пресинтетический), синтетический,
постсинтетический (премитотический) период. Три последних периода составляют интерфазу – подготовку к делению клетки.

Разберем периоды интерфазы более подробно:

  • Пресинтетический (постмитотический) период G1 – 2n2c
  • Интенсивно образуются рибосомы, синтезируется АТФ и все виды РНК, ферменты, делятся митохондрии, клетка растет.

  • Синтетический период S – 2n4c
  • Длится 6-10 часов. Важнейшее событие этого периода – удвоение ДНК, вследствие которого к концу синтетического периода
    каждая хромосома состоит из двух хроматид. Активно синтезируются структурные белки ДНК – гистоны.

  • Постсинтетический (премитотический) период G2 – 2n4c
  • Короткий, длится 2-6 часов. Это время клетка тратит на подготовку к последующему процессу – делению клетки, синтезируются
    белки и АТФ, удваиваются центриоли.

Жизненный цикл клетки

Митоз (греч. μίτος – нить)

Митоз является непрямым способом деления клетки, наиболее распространенным среди эукариотических организмов. По продолжительности
занимает около 1 часа. К митозу клетка готовится в период интерфазы путем синтеза белков, АТФ и удвоения молекулы ДНК в синтетическом
периоде.

Митоз состоит из 4 фаз, которые мы далее детально рассмотрим: профаза, метафаза, анафаза, телофаза. Напомню, что клетка вступает в
митоз с уже удвоенным (в синтетическом периоде) количеством ДНК. Мы рассмотрим митоз на примере клетки с набором хромосом и ДНК 2n4c.

  • Профаза – 2n4c
    • Бесформенный хроматин в ядре начинает собираться в четкие оформленные структуры – хромосомы – происходит это за счет
      спирализации ДНК (вспомните мой пример ассоциации хромосомы с мотком ниток)
    • Оболочка ядра распадается, хромосомы оказываются в цитоплазме клетки
    • Центриоли перемещаются к полюсам клетки, образуются центры веретена деления

    Профаза митоза

  • Метафаза – 2n4c
  • ДНК максимально спирализована в хромосомы, которые располагаются на экваторе клетки. Каждая хромосома состоит из двух
    хроматид, соединенных центромерой (кинетохором). Нити веретена деления прикрепляются к центромерам хромосом (если точнее,
    прикрепляются к кинетохору центромеры).

    Метафаза митоза

  • Анафаза – 4n4c
  • Самая короткая фаза митоза. Хромосомы, состоящие из двух хроматид, распадаются на отдельные хроматиды. Нити веретена деления
    тянут хроматиды (синоним – дочерние хромосомы) к полюсам клетки.

    Анафаза митоза

  • Телофаза – 2n2c
  • В этой фазе хроматиды (дочерние хромосомы) достигают полюсов клетки.

    • Начинается процесс деспирализации ДНК, хромосомы исчезают и становятся хроматином (вспомните ассоциацию про раскрученный
      моток ниток)
    • Появляется ядерная оболочка, формируется ядро
    • Разрушаются нити веретена деления

    В телофазе происходит деление цитоплазмы – цитокинез (цитотомия), в результате которого образуются две дочерние клетки с
    набором 2n2c. В клетках животных цитокинез осуществляется стягиванием цитоплазмы, в клетках растений – формированием
    плотной клеточной стенки (которая растет изнутри кнаружи).

    Телофаза митоза

Читайте также:  Жизненный цикл по грейнеру

Образовавшиеся в телофазе дочерние клетки 2n2c вступают в постмитотический период. Затем в синтетический период, где происходит
удвоение ДНК, после чего каждая хромосома состоит из двух хроматид – 2n4c. Клетка с набором 2n4c и попадает в профазу
митоза. Так замыкается клеточный цикл.

Биологическое значение митоза очень существенно:

  • В результате митоза образуются дочерние клетки – генетические копии (клоны) материнской.
  • Митоз является универсальным способом бесполого размножения, регенерации и протекает одинаково у всех эукариот (ядерных
    организмов).
  • Универсальность митоза служит очередным доказательством единства всего органического мира.

Попробуйте самостоятельно вспомнить фазы митоза и описать события, которые в них происходят. Особенное внимание уделите состоянию
хромосом, подчеркните сколько в них содержится молекул ДНК (хроматид).

Фазы митоза

Мейоз

Мейоз (от греч. μείωσις — уменьшение), или редукционное деление клетки – способ деления клетки, при котором наследственный материал
в них (число хромосом) уменьшается вдвое. Мейоз происходит в ходе образования половых клеток (гамет) у животных и спор у растений.

В результате мейоза из диплоидных клеток (2n) получаются гаплоидные (n). Мейоз состоит из двух последовательных делений, между которыми
практически отсутствует пауза. Удвоение ДНК перед мейозом происходит в синтетическом периоде интерфазы (как и при митозе).

Мейоз

Как уже было сказано, мейоз состоит из двух делений: мейоза I (редукционного) и мейоза II (эквационного). Первое деление
называют редукционным (лат. reductio – уменьшение), так как к его окончанию число хромосом уменьшается вдвое. Второе деление – эквационное
(лат. aequatio — уравнивание) очень похоже на митоз.

Приступим к изучению первого деления мейоза. За основу возьмем клетку с двумя хромосомами и удвоенным (в синтетическом периоде
интерфазы) количеством ДНК – 2n4c.

  • Профаза мейоза I
  • Помимо типичных для профазы процессов (спирализация ДНК в хромосомы, разрушение ядерной оболочки, движение центриолей к полюсам клетки) в профазе мейоза I происходят два важнейших процесса: конъюгация и кроссинговер.

    Профаза мейоза I

    Конъюгация (лат. conjugatio — соединение) – сближение гомологичных хромосом друг с другом. Гомологичными хромосомами называются
    такие, которые соответствуют друг другу по размерам, форме и строению. В результате конъюгации образуются комплексы,
    состоящие из двух хромосом – биваленты (лат. bi – двойной и valens – сильный).

    После конъюгации становится возможен следующий процесс –
    кроссинговер (от англ. crossing over — пересечение), в ходе которого происходит обмен участками между гомологичными хромосомами.

    Кроссинговер является важнейшим процессом, в ходе которого возникают рекомбинации генов, что создает уникальный материал для эволюции,
    последующего естественного отбора. Кроссинговер приводит к генетическому разнообразию потомства.

    Кроссинговер

  • Метафаза мейоза I
  • Биваленты (комплексы из двух хромосом) выстраиваются по экватору клетки. Формируется веретено деления, нити которого
    крепятся к центромере (кинетохору) каждой хромосомы, составляющей бивалент.

    Метафаза мейоза I

  • Анафаза мейоза I
  • Нити веретена деления сокращаются, вследствие чего биваленты распадаются на отдельные хромосомы, которые и притягиваются
    к полюсам клетки. В результате у каждого полюса формируется гаплоидный набор будущей клетки – n2c, за счет чего мейоз I и называется редукционным делением.

    Анафаза мейоза I

  • Телофаза мейоза I
  • Происходит цитокинез – деление цитоплазмы. Формируются две клетки с гаплоидным набором хромосом. Очень короткая интерфаза
    после мейоза I сменяется новым делением – мейозом II.

    Телофаза мейоза I

Мейоз II весьма напоминает митоз по всем фазам, поэтому если вы что-то подзабыли: поищите в теме про митоз. Главное отличие мейоза II от мейоза I в том, что в анафазе мейоза II к полюсам клетки расходятся не хромосомы, а хроматиды (дочерние хромосомы).

Мейоз II

В результате мейоза I и мейоза II мы получили из диплоидной клетки 2n4c гаплоидную клетку – nc. В этом и состоит сущность
мейоза – образование гаплоидных (половых) клеток. Вспомнить набор хромосом и ДНК в различных фазах мейоза нам еще предстоит,
когда будем изучать гаметогенез, в результате которого образуются сперматозоиды и яйцеклетки – половые клетки (гаметы).

Читайте также:  Жизненный цикл товара на основе матрицы бкг

Сейчас мы возьмем клетку, в которой 4 хромосомы. Попытайтесь самостоятельно описать фазы и этапы, через которые она
пройдет в ходе мейоза. Проговорите и осмыслите набор хромосом в каждой фазе.

Помните, что до мейоза происходит удвоение ДНК в синтетическом периоде. Из-за этого уже в начале мейоза вы видите их
увеличенное число – 2n4c (4 хромосомы, 8 молекул ДНК). Я понимаю, что хочется написать 4n8c, однако это неправильная запись!) Ведь наша исходная клетка диплоидна (2n), а не тетраплоидна (4n) 😉

Мейоз

Итак, самое время обсудить биологическое значение мейоза:

  • Поддерживает постоянное число хромосом во всех поколениях, предотвращает удвоение числа хромосом
  • Благодаря кроссинговеру возникают новые комбинации генов, обеспечивается генетическое разнообразие состава гамет
  • Потомство с новыми признаками – материал для эволюции, который проходит естественный отбор
Бинарное деление надвое

Митоз и мейоз возможен только у эукариот, а как же быть прокариотам – бактериям? Они изобрели несколько другой способ и делятся
бинарным делением надвое. Оно встречается не только у бактерий, но и у ряда ядерных организмов: амебы, инфузории, эвглены зеленой.

Бинарное деление надвое

При благоприятных условиях бактерии делятся каждые 20 минут. В случае, если условия не столь благоприятны, то больше времени
уходит на рост и развитие, накопление питательных веществ. Интервалы между делениями становятся длиннее.

Амитоз (от греч. ἀ – частица отрицания и μίτος – нить)

Способ прямого деления клетки, при котором не происходит образования веретена деления и равномерного распределения
хромосом. Клетки делятся напрямую путем перетяжки, наследственный материал распределяется “как кому повезет” – случайным
образом.

Амитоз

Амитоз встречается в раковых (опухолевых) клетках, воспалительно измененных, в старых клетках.

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Опорный конспект

ЛЕКЦИЯ 14

РОСТ И РАЗВИТИЕ РАСТЕНИЙ

Онтогенез – это индивидуальное развитие организма от зиготы или вегетативного зачатка до естественной смерти. В ходе онтогенеза реализуется наследственная информация организма (генотип) в конкретных условиях окружающей среды, в результате чего формируется фенотип, то есть совокупность всех признаков данного индивидуального организма.

Филогенез – это историческое развитие мира живых организмов как в целом, так и в отдельных таксономических группах (типах, родах, видах, семействах).

Рост – необратимое увеличение размеров и массы клетки, органа, всего организма, связанное с новообразованием элементов и структур. Рост отражает количественные изменения, сопровождающие развитие организма и его частей. Не всякое увеличение массы есть рост (набухание семян).

Развитие– это качественные изменения в структуре и функциональной активности растения и его частей в процессе онтогенеза.

Развитие растений: Рост и развитие растений тесно связаны между собой и совершаются одновременно. Рост – одно из свойств развития. Процессы роста и развития обусловлены наследственными свойствами растений, координируются фитогормонами и ингибиторами, зависят от факторов внешней среды.

Дифференцировка – возникновение качественных различий между клетками, тканями и органами.

Биогенез клеточных структур.

Для роста необходимы строительный материал и энергия. Источником энергии и углеводов является фотосинтез. Используются также минеральные вещества и вода. Из них синтезируются белки, жиры, углеводы, НК, витамины, гормоны, вторичные метаболиты.

Этапы биогенеза клеточных структур

Название этапа Характеристика
Синтез ДНК Синтез ДНК происходит в результате полуконсервативной репликации (копирование каждой из цепей ДНК). М-РНК, р-РНК, т-РНК синтезируются на матрице ДНК в результате транскрипции.
Синтез белков с участием всех форм РНК на полисомах Происходит в результате трансляции в цитоплазме, хлоропластах, митохондриях.
Самосборка надмолекулярных комплексов Процесс спонтанной агрегации макромолекул – образование мембран, микротубочек, полисом.
Биогенез органоидов Хлоропласты формируются в клетке из пропластид только на свету, митохондрии могут делиться (собственная ДНК).

Фазы онтогенеза растительных клеток

1.Деление клетки – митоз, когда число хромосом удваивается, каждая дочерняя клетка получает такой же набор хромосом, как у родительской.
2.Растяжение клеток – фаза, характеризующаяся сильным увеличением клеток в объеме, появлению вакуолей с клеточным соком.
3.Дифференцировка – окончательное формирование клетки и ее специализация (приобретение определенной функции).
4.Старение и отмирание – завершающие этапы онтогенеза клетки. Характерно ослабление синтетических и усиление гидролитических процессов, окисление мембран и липидов.

Онтогенез растительных клеток– это жизненный цикл клетки или период ее существования от момента образования до ее собственного деления или смерти.

Читайте также:  Инновационный процесс и его этапы жизненный цикл инновации это

Онтогенеза высших растений– это жизненный цикл растений, который начинается с первого деления зиготы и продолжается до полного отмирания взрослого организма.

Источник

Раздел ЕГЭ: 2.7. … Жизненный цикл клетки: интерфаза и митоз. Митоз — деление соматических клеток. Мейоз. Фазы митоза и мейоза. …

Клеточный цикл (жизненный цикл клетки) — время существования клетки от начала одного деления до начала следующего деления, состоит из интерфазы и собственно процесса деления.

Интерфаза — период между делениями, в котором происходят процессы роста и развития клетки, удвоения ДНК, синтеза белков и органических соединений.

жизненный цикл клетки

виды деления клеток

Митоз и амитоз

Митоз (непрямое деление клетки) — процесс равномерного распределения между дочерними клетками ядерного наследственного материала.

В результате митоза из одной материнской клетки с диплоидным (двойным) набором хромосом образуются две диплоидные дочерние клетки, содержащие полную генетическую информацию в том же объёме, что и родительская. Митоз обеспечивает сохранность наследственных признаков и увеличение количества клеток или одноклеточных организмов.

Стадии (фазы) митоза:

  • Профаза — спирализация хромосом, уменьшение их функциональной активности; репликация практически не идёт; разрушение оболочки ядра; образование веретена деления; прикрепление хромосом к нитям веретена деления.
  • Метафаза — спирализация хромосом достигает максимума; хромосомы утрачивают свою функциональную активность, образуют экваториальную пластинку.
  • Анафаза — деление центромер; расхождение по нитям веретена сестринских хромосом. Анафаза заканчивается, когда центромеры достигают полюсов клетки.
  • Телофаза — деспирализация хромосом; образование ядерной оболочки; деление цитоплазмы; между дочерними клетками формируется клеточная стенка.

митоз

Амитоз — прямое деление клетки, при котором ядро делится путём перешнуровки без предшествующей перестройки:

  • хромосомы не проходят цикла спирализации;
  • не образуется веретено деления;
  • клетка делится сразу после репликации ДНК;
  • ДНК между дочерними клетками распределяется неравномерно.

Амитоз проходит быстрее, чем митоз. В результате амитоза увеличивается количество дочерних клеток, но одновременно могут появляться двух- и многоядерные клетки. Амитоз характерен для одноклеточных и некоторых клеток многоклеточных организмов (клетки при патологических состояниях).

Мейоз

Мейоз — способ деления эукариотических клеток, в результате которого из одной материнской клетки образуются четыре дочерние с уменьшенным в два раза набором хромосом. На этапе интерфазы (предшествует мейозу) происходит репликация ДНК с последующим удвоением хромосом. Клетки с диплоидным набором хромосом, каждая состоит из одной хромосомной нити (хромонемы). После интерфазы хромосомы становятся удвоенными, а их диплоидное число 2n сохраняется. Центриоли в клеточном центре удваиваются.

Стадии (фазы) мейоза I (редукционное деление):

  1. Профаза I — спирализация хромосом; конъюгация; кроссинговер; хроматиды начинают расходиться; биваленты обособляются и располагаются по периферии ядра; ядрышко исчезает.
  2. Метафаза I — начинается с момента разрушения ядерной оболочки; биваленты располагаются в экваториальной плоскости, прикреплённые к нитям веретена деления.
  3. Анафаза I — центромеры каждой пары гомологичных хромосом разъединяются, и к полюсам клетки отходят гомологичные хромосомы, состоящие из двух хроматид.
  4. Телофаза I — начинается с достижения хромосомами полюсов клетки (у каждого полюса — п хромосом): происходит редукция числа хромосом; образуется ядерная оболочка; делится цитоплазма; формируется клеточная стенка.

Завершение мейоза I сопровождается образованием двух дочерних клеток, содержащих гаплоидный набор хромосом, которые в свою очередь остаются удвоенными.

Во время кратковременной интерфазы (интеркинеза) не происходит репликация ДНК, нет удвоения хромосомы, две дочерние клетки вступают во второе деление мейоза.

Стадии (фазы) мейоза II (по типу митоза — равное деление):

  1. Профаза II — непродолжительная, так как хроматиды спирализованы.
  2. Метафаза II — образуются экваториальная пластинка, хромосомы, состоящие из двух хроматид, центромерными участками прикрепляются к нитям веретена деления.
  3. Анафаза II — хроматиды расходятся к полюсам клетки.
  4. Телофаза II — образуется ядерная оболочка; делится цитоплазма; формируется клеточная стенка. Образуются четыре гаплоидные клетки.

мейоз

Мейоз II проходит по типу митоза. В результате мейоза из одной клетки с диплоидным набором хромосом после двух последовательных делений образуются 4n клетки.

Черты мейоза

  1. Редукция числа хромосом (если бы не было уменьшения числа хромосом при образовании половых клеток, то из поколения в поколение их количество возрастало бы и был бы утрачен один из важнейших признаков каждого вида — постоянство числа хромосом),
  2. Конъюгация (сближение и переплетение) гомологичных хромосом.
  3. Рекомбинация генетического материала, обусловленная случайным расхождением материнских и отцовских гомологичных хромо сом в дочерние клетки, а также кроссинговером (процессом обмена участками гомологичных хромосом).

Таким образом, мейоз — непрерывный процесс, состоящий из двух последовательных делений ядра и цитоплазмы, перед которыми репликация происходит только один раз. Энергия и вещества, необходимые для обоих делений мейоза, накапливаются во время интерфазы I.

Это конспект для 10-11 классов по теме «Жизненный цикл клетки. Митоз и мейоз». Выберите дальнейшее действие:

  • Вернуться к Списку конспектов по Биологии.
  • Найти конспект в Кодификаторе ЕГЭ по биологии

Источник