Круговые процессы кпд цикла

Рассматривается циклзамкнутый процесс, при котором система, пройдя ряд последовательных состояний, возвращается в исходное состояние. Именно замкнутые циклы представляют практический интерес, так как непрерывно действующая тепловая машина должна работать периодически. Назначение тепловой машины – совершение механической работы за счёт тепловой энергии. Таким образом, кроме рабочего тела, совершающего циклический процесс, должен быть резервуар теплоты – нагреватель, из которого рабочее тело будет черпать теплоту. Опыт показывает, что этих двух составных частей для работы тепловой машины недостаточно: чтобы рабочее тело возвращалось в исходное состояние, совершив некоторую работу, и цикл мог повторяться, обязательно требуется наличие охладителя (холодильника), которому рабочее тело передаёт некоторое количество теплоты (рис.8.6). Роль охладителя может играть окружающая среда.

Замкнутый процесс на любой диаграмме состояний изображается замкнутой кривой, так как рабочее тело возвращается в исходное состояние. Цикл называется прямым, если в осях p-V обход цикла совершается по часовой стрелке (рис.8.7); так работает тепловая машина. Если обход цикла совершается против часовой стрелки (рис.8.8), то цикл называется обратным. Так работает холодильная установка, назначение которой – поддерживание низкой температуры в холодильной камере, то есть отвод тепла от более холодного тела к более нагретому; при этом должна затрачиваться некоторая работа. Обратные циклы в этой лекции рассматриваться не будут.

Рис.8.7                                      Рис.8.8 

Разобьём прямой цикл (рис.8.9) на два процесса:

1) расширения от минимального объёма  до максимального  (1→2); 

2) сжатия (2→1).

Работа А1, совершённая системой на участке 1→2, положительна и равна площади под графиком процесса – это вся заштрихованная фигура на рис. 8.9. При этом система получает от нагревателя количество теплоты Q1, которое по первому началу термодинамики равно сумме работы А1 и приращения внутренней энергии системы при переходе из состояния 1 в состояние 2:

.                               (8.32)

На участке 2→1 происходит уменьшение объёма, внешние силы совершают над системой положительную работу А2, равную площади под участком 2-1 (двойная штриховка). Работа самой системы отрицательна (–A2<0). Система на этом участке отдаёт охладителю теплоту Q2 (Q2>0), а получает отрицательное количество теплоты, равное (–Q2). По первому началу термодинамики

                            (8.33)

Объединяя (8.32) и (8.33), найдём количество теплоты, полученное системой за весь цикл:

.                                    (8.34)

Система вернулась в исходное состояние, и полное изменение внутренней энергии равно нулю, так как внутренняя энергия является функцией состояния системы:

.

Работа A, совершённая за весь цикл, равна разности модулей работ на участках 1→2 и 2→1. Она равна площади внутри цикла (рис.8.8, косая штриховка). Таким образом, за цикл в работу преобразуется количество теплоты, равное разности теплот: полученной от нагревателя и отданной охладителю:

.                           (8.35)

Коэффициент полезного действия (КПД) цикла, по определению, равен отношению работы A, совершённой за цикл, ко всей затраченной тепловой энергии :

.                                              (8.36)

Из (8.35) получим:

.                                     (8.37)

Отсюда видно, что КПД любого цикла не превышает единицы. Это – закон сохранения энергии: нельзя получить полезную работу больше, чем затраченная тепловая энергия, то есть нельзя построить вечный двигатель первого рода.

Источник

Круговой процесс — процесс, при котором газ, пройдя через ряд состояний, возвращается в исходное.
Если круговой процесс на диаграмме P-V протекает по часовой стрелке, то часть тепловой энергии, полученной от нагревателя, превращается в работу. Так работает тепловая машина.
Если круговой процесс на диаграмме P-V протекает против часовой стрелки, то тепловая энергия передается от холодильника (тела с меньшей температурой) к нагревателю (телу с большей температурой) за счет работы внешней силы. Так работает холодильная машина.

Цикл Карно́ — идеальный термодинамический цикл. Тепловая машина Карно, работающая по этому циклу, обладает максимальным КПД из всех машин, у которых максимальная и минимальная температуры осуществляемого цикла совпадают соответственно с максимальной и минимальной температурами цикла Карно. Состоит из 2 адиабатических и 2 изотермических процессов.

Цикл Карно назван в честь французского военного инженера Сади Карно, который впервые его исследовал в 1824 году.

Одним из важных свойств цикла Карно является его обратимость: он может быть проведён как в прямом, так и в обратном направлении, при этом энтропияадиабатически изолированной (без теплообмена с окружающей средой) системы не меняется.

Вычисление совершаемой веществом работы, за единичный цикл Карно при постоянных не одинаковых температурах Т1 и Т2 от нагревателя и холодильника, можно вычислить с помощью расчета:

А = Q1 – Q2 = (Т1-Т2/T1) *Q1Данная работа количественно приравнивается к площади АВСD с ограничивающими отрезками в виде изотерм и адиабат которые и создают данный цикл.

Теорема Карно (с выводом).

Из всех периодически действующих тепловых машин, имеющих одинаковые температуры нагревателей T1 и холодильников T2, наибольшим КПД обладают обратимые машины. При этом КПД обратимых машин, работающих при одинаковых температурах нагревателей и холодильников, равны друг другу и не зависят от природы рабочего тела, а определяются только температурами нагревателя и холодильника.
Для построения рабочего цикла использует обратимые процессы. Например, цикл Карно состоит из двух изотерм (1–2, 2-4) и двух адиабат (2-3, 4–1), в которых теплота и изменение внутренней энергии полностью превращаются в работу (рис. 19).

Рис. 19. Цикл Карно

Общее изменение энтропии в цикле: ΔS=ΔS12+ΔS23+ΔS34+ΔS41.
Так как мы рассматриваем только обратимые процессы, общее изменение энтропии ΔS=0.
Последовательные термодинамические процессы в цикле Карно:

Процесс Работа Изменение энтропии Наблюдается
Изотермическое расширение 1-2, T=const; V2>V1 A12=Q1=(m/M)·RT1·ln(V2/V1) ΔS12=|Q1|/T1 тело принимает теплоту
Адиабатическое расширение 2-3, δQ=0; T2<T1 A23=-(m/M)·CV(T2-T1) ΔS23=0 охлаждение до T2
Изотермическое сжатие 3-4,
T=const; V3>V4
A34=(m/M)·RT2·ln(V4/V3)=-Q2 ΔS34=|Q2|/T2 тело отдает теплоту
Адиабатическое сжатие 4-1,
δQ=0; T1<T2
A41=-(m/M)·CV(T1-T2)=-A23 ΔS41=0 восстановление
начального состояния p1, V1, T1

Общее изменение энтропии в равновесном цикле: ΔS=(|Q1|/T1)+0-(|Q2|/T2)+0=0⇒T2/T1=|Q2|/|Q1|,

поэтому: ηmax=1-(T2/T1) – максимальный КПД теплового двигателя.
Следствия:
1. КПД цикла Карно не зависит от рода рабочего тела.
2. КПД определяется только разницей температур нагревателя и холодильника.
3. КПД не может быть 100% даже у идеальной тепловой машины, так как при этом температура холодильника должна быть T2=0, что запрещено законами квантовой механики и третьим законом термодинамики.
4. Невозможно создать вечный двигатель второго рода, работающий в тепловом равновесии без перепада температур, т.е. при T2=T1, так как в этом случае ηmax=0.

Читайте также:  Как пить тайм фактор при нерегулярном цикле

II начало термодинамики.

Первое начало термодинамики, выражая закон сохранения и превращения энергии, не позволяет установить направление протекания термодинамических процессов. Кроме того, можно представить множество процессов, не противоречащих первому началу, в которых энергия сохраняется, а в природе они не осуществляются. Появление второго начала термодинамики связано с необходимостью дать ответ на вопрос, какие процессы в природе возможны, а какие нет. Второе начало термодинамики определяет направление протекания термодинамических процессов.

Используя понятие энтропии и неравенство Клаузиуса, второе начало термодинамикиможно сформулировать как закон возрастания энтропии замкнутой системы при необратимых процессах: любой необратимый процесс в замкнутой системе происходит так, что энтропия системы при этом возрастает.

Можно дать более краткую формулировку второго начала термодинамики: в процессах, происходящих в замкнутой системе, энтропия не убывает. Здесь существенно, что речь идет о замкнутых системах, так как в незамкнутых системах энтропия может вести себя любым образом (убывать, возрастать, оставаться постоянной). Кроме того, отметим еще раз, что энтропия остается постоянной в замкнутой системе только при обратимых процессах. При необратимых процессах в замкнутой системе энтропия всегда возрастает.

Формула Больцмана (2.134) позволяет объяснить постулируемое вторым началом термодинамики возрастание энтропии в замкнутой системе при необратимых процессах: возрастание энтропии означает переход системы из менее вероятных в более вероятные состояния. Таким образом, формула Больцмана позволяет дать статистическое толкование второго начала термодинамики. Оно, являясь статистическим законом, описывает закономерности хаотического движения большого числа частиц, составляющих замкнутую систему.

Укажем еще две формулировки второго начала термодинамики:

1) по Кельвину: невозможен круговой процесс, единственным результатом которого является превращение теплоты, полученной от нагревателя, в эквивалентную ей работу;

2) по Клаузиусу: невозможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более нагретому.

Можно довольно просто доказать эквивалентность формулировок Кельвина и Клаузиуса. Кроме того, показано, что если в замкнутой системе провести воображаемый процесс, противоречащий второму началу термодинамики в формулировке Клаузиуса, то он сопровождается уменьшением энтропии. Это же доказывает эквивалентность формулировки Клаузиуса (а следовательно, и Кельвина) и статистической формулировки, согласно которой энтропия замкнутой системы не может убывать.

В середине XIX в. возникла проблема так называемой тепловой смерти вселенной. Рассматривая Вселенную как замкнутую систему к применяя к ней второе начало термодинамики, Клаузиус свел его содержание к утверждению, что энтропия Вселенной должна достигнуть своего максимума. Это означает, что со временем все формы движения должны перейти в тепловую. Переход же теплоты от горячих тел к холодным приведет к тому, что температура всех тел во Вселенной сравняется, т. е. наступит полное тепловое равновесие и все процессы во Вселенной прекратятся – наступит тепловая смерть Вселенной. Ошибочность вывода о тепловой смерти заключается в том, что бессмысленно применять второе начало термодинамики к незамкнутым системам, например к такой безграничной в бесконечно развивающейся системе, как Вселенная.

Энтропия по Клаузиусу.

К макроскопическим параметрам термодинамической системы относятся давление, объём и температура. Однако существует ещё одна важная физическая величина, которую используют для описания состояний и процессов в термодинамических системах. Её называют энтропией.

Впервые это понятие ввёл в 1865 г. немецкий физик Рудольф Клаузиус. Энтропией он назвал функцию состояния термодинамической системы, определяющую меру необратимого рассеивания энергии.

Что же такое энтропия? Прежде чем ответить на этот вопрос, познакомимся с понятием «приведенной теплоты». Любой термодинамический процесс, проходящий в системе, состоит из какого-то количества переходов системы из одного состояния в другое. Приведенной теплотой называют отношение количества теплоты в изотермическом процессе к температуре, при которой происходит передача этой теплоты.

Q’ = Q/T.

Для любого незамкнутого термодинамического процесса существует такая функция системы, изменение которой при переходе из одного состояния в другое равно сумме приведенных теплот. Этой функции Клаузиус дал название «энтропия» и обозначил её буквой S, а отношение общего количества теплоты ∆Qк величине абсолютной температурыТ назвал изменением энтропии.

Обратим внимание на то, что формула Клаузиуса определяет не само значение энтропии, а только её изменение.

Что же представляет собой «необратимое рассевание энергии» в термодинамике?

Одна из формулировок второго закона термодинамики выглядит следующим образом: “Невозможен процесс, единственным результатом которого является превращение в работу всего количества теплоты, полученного системой“. То есть часть теплоты превращается в работу, а какая-то её часть рассеивается. Этот процесс необратим. В дальнейшем рассеиваемая энергия уже не может совершать работу. Например, в реальном тепловом двигателе рабочему телу передаётся не вся теплота. Часть её рассеивается во внешнюю среду, нагревая её.

В идеальной тепловой машине, работающей по циклу Карно, сумма всех приведенных теплот равна нулю. Это утверждение справедливо и для любого квазистатического (обратимого) цикла. И неважно, из какого количества переходов из одного состояния в другое состоит такой процесс.

Если разбить произвольный термодинамический процесс на участки бесконечно малой величины, то приведенная теплота на каждом таком участке будет равна δQ/T. Полный дифференциал энтропии dS = δQ/T.

Энтропию называют мерой способности теплоты необратимо рассеиваться. Её изменение показывает, какое количество энергии беспорядочно рассеивается в окружающую среду в виде теплоты.

В замкнутой изолированной системе, не обменивающейся теплом с окружающей средой, при обратимых процессах энтропия не изменяется. Это означает, что дифференциал dS = 0. В реальных и необратимых процессах передача тепла происходит от тёплого тела к холодному. В таких процессах энтропия всегда увеличивается (dS ˃ 0). Следовательно, она указывает направление протекания термодинамического процесса.

Читайте также:  Что характерно для былин киевского цикла

Формула Клаузиуса, записанная в виде dS = δQ/T, справедлива лишь для квазистатических процессов. Это идеализированные процессы, являющиеся чередой состояний равновесия, следующих непрерывно друг за другом. Их ввели в термодинамику для того, чтобы упростить исследования реальных термодинамических процессов. Считается, что в любой момент времени квазистатическая система находится в состоянии термодинамического равновесия. Такой процесс называют также квазиравновесным.

Конечно, в природе таких процессов не существует. Ведь любое изменение в системе нарушает её равновесное состояние. В ней начинают происходить различные переходные процессы и процессы релаксации, стремящиеся вернуть систему в состояние равновесия. Но термодинамические процессы, протекающие достаточно медленно, вполне могут рассматриваться как квазистатические.

На практике существует множество термодинамических задач, для решения которых требуется создание сложной аппаратуры, создание давления в несколько сот тысяч атмосфер, поддержание очень высокой температуры в течение длительного времени. А квазистатические процессы позволяют рассчитать энтропию для таких реальных процессов, предсказать, как может проходить тот или иной процесс, реализовать который на практике очень сложно.

Рекомендуемые страницы:

Читайте также:

Источник

В термодинамике цикл Карно́ или процесс Карно́ — это идеальный[1]круговой процесс, состоящий из двух адиабатных и двух изотермических процессов[2]. В процессе Карно термодинамическая система выполняет механическую работу за счёт обмена теплотой с двумя тепловыми резервуарами, имеющими постоянные, но различающиеся температуры. Резервуар с более высокой температурой называется нагревателем, а с более низкой температурой — холодильником[3].

Цикл Карно назван в честь французского учёного и инженера Сади Карно, который впервые его описал в своём сочинении «О движущей силе огня и о машинах, способных развивать эту силу» в 1824 году[4][5].

Поскольку идеальные процессы могут осуществляться лишь с бесконечно малой скоростью, мощность тепловой машины в цикле Карно равна нулю. Мощность реальных тепловых машин не может быть равна нулю, поэтому реальные процессы могут приближаться к идеальному процессу Карно только с большей или меньшей степенью точности.

Коэффициент полезного действия (КПД) любой тепловой машины не может превосходить КПД идеальной тепловой машины, работающей по циклу Карно с теми же самыми температурами нагревателя и холодильника[6]. По этой причине, позволяя оценить верхний предел КПД тепловой машины, цикл Карно важен для теории тепловых машин. В то же время КПД цикла Карно настолько чувствителен к отклонениям от идеальности (потерям на трение), что данный цикл никогда не применяли в реальных тепловых машинах[K 1][8].

Описание цикла Карно[править | править код]

Рис. 1. Цикл Карно в координатах T—S

Рис. 2. Цикл Карно в координатах p—V

Рис. 3. Цикл Карно на термодинамической поверхности идеального газа

Пусть тепловая машина состоит из нагревателя с температурой , холодильника с температурой и рабочего тела.

Цикл Карно состоит из четырёх обратимых стадий, две из которых осуществляются при постоянной температуре (изотермически), а две — при постоянной энтропии (адиабатически). Поэтому цикл Карно удобно представить в координатах (температура) и (энтропия).

1. Изотермическое расширение (на рис. 1 — процесс A→B). В начале процесса рабочее тело имеет температуру , то есть температуру нагревателя. При расширении рабочего тела его температура не падает за счет передачи от нагревателя количества теплоты , то есть расширение происходит изотермически (при постоянной температуре) . При этом объём рабочего тела увеличивается, оно совершает механическую работу, а его энтропия возрастает.

2. Адиабатическое расширение (на рис. 1 — процесс B→C). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом температура тела уменьшается до температуры холодильника , тело совершает механическую работу, а энтропия остаётся постоянной.

3. Изотермическое сжатие (на рис. 1 — процесс C→D). Рабочее тело, имеющее температуру , приводится в контакт с холодильником и начинает изотермически сжиматься под действием внешней силы, отдавая холодильнику количество теплоты . Над телом совершается работа, его энтропия уменьшается.

4. Адиабатическое сжатие (на рис. 1 — процесс D→A). Рабочее тело отсоединяется от холодильника и сжимается под действием внешней силы без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя, над телом совершается работа, его энтропия остаётся постоянной.

Обратный цикл Карно[править | править код]

В термодинамике холодильных установок и тепловых насосов рассматривают обратный цикл Карно, состоящий из следующих стадий[9][10]: адиабатического сжатия за счёт совершения работы (на рис. 1 — процесс C→B); изотермического сжатия с передачей теплоты более нагретому тепловому резервуару (на рис. 1 — процесс B→A); адиабатического расширения (на рис. 1 — процесс A→D); изотермического расширения с отводом теплоты от более холодного теплового резервуара (на рис. 1 — процесс D→C).

КПД тепловой машины Карно[править | править код]

Количество теплоты, полученное рабочим телом от нагревателя при изотермическом расширении, равно

Аналогично, при изотермическом сжатии рабочее тело отдаёт холодильнику

Отсюда коэффициент полезного действия тепловой машины Карно равен

Первая и вторая теоремы Карно[править | править код]

Из последнего выражения следует, что КПД тепловой машины, работающей по циклу Карно, зависит только от температур нагревателя и холодильника, но не зависит ни от устройства машины, ни от вида или свойств её рабочего тела. Этот результат составляет содержание первой теоремы Карно[11]. Кроме того, из него следует, что КПД может составлять 100 % только в том случае, если температура холодильника равна абсолютному нулю. Это невозможно, но не из-за недостижимости абсолютного нуля (этот вопрос решается только третьим началом термодинамики, учитывать которое здесь нет необходимости), а из-за того, что такой цикл или нельзя замкнуть, или он вырождается в совокупность двух совпадающих адиабат и изотерм.

Читайте также:  Длительный менструационный цикл название

Поэтому максимальный КПД любой тепловой машины не может превосходить КПД тепловой машины Карно, работающей при тех же температурах нагревателя и холодильника. Это утверждение называется второй теоремой Карно[12][13]. Оно даёт верхний предел КПД любой тепловой машины и позволяет оценить отклонение реального КПД от максимального, то есть потери энергии вследствие неидеальности тепловых процессов.

Связь между обратимостью цикла и КПД[править | править код]

Для того чтобы цикл был обратимым, в нём должна быть исключена передача теплоты при наличии разности температур, иначе нарушается условие адиабатичности процесса. Поэтому передача теплоты должна осуществляться либо в изотермическом процессе (как в цикле Карно), либо в эквидистантном процессе (обобщённый цикл Карно или, для примера, его частный случай Цикл Брайтона). Для того чтобы менять температуру рабочего тела от температуры нагревателя до температуры холодильника и обратно, необходимо использовать либо адиабатические процессы (они идут без теплообмена и, значит, не влияют на энтропию), либо циклы с регенерацией тепла при которых нет передачи тепла при разности температур. Мы приходим к выводу, что любой обратимый цикл может быть сведён к циклу Карно.

Примером обратимого цикла, не являющегося циклом Карно, но интегрально совпадающим с ним, является идеальный цикл Стирлинга: в двигателе Стирлинга добавлен регенератор, обеспечивающий полное приближение цикла к циклу Карно с достижением обратимости и тех же величин КПД[14]. Возможны и другие идеальные циклы, в которых коэффициент полезного действия определяется по той же формуле, что и для циклов Карно и Стирлинга, например цикл Эрикссона (англ.)русск., состоящий из двух изобар и двух изотерм[14].

Если же в цикле возникает передача теплоты при наличии разности температур, а таковыми являются все технические реализации термодинамических циклов, то цикл утрачивает свойство обратимости. Иначе говоря, посредством отведённой в цикле механической работы становится невозможным получить исходную теплоту. КПД такого цикла будет всегда меньше, чем КПД цикла Карно.

См. также[править | править код]

  • Термодинамические циклы
  • Первое начало термодинамики
  • Второе начало термодинамики
  • Термодинамическая энтропия
  • Термодинамические потенциалы

Комментарии[править | править код]

  1. ↑ В реальных тепловых машинах цикл Карно не используют, поскольку практически невозможно осуществить процессы изотермического сжатия и расширения. Кроме того, полезная работа цикла, представляющая собой алгебраическую сумму работ во всех четырех составляющих цикл частных процессах, даже в идеальном случае полного отсутствия потерь мала по сравнению с работой в каждом из частных процессов, то есть мы имеем дело с обычной ситуацией, когда итоговый результат представляет собой малую разность больших величин. Применительно к математическим вычислениям это означает высокую отзывчивость результата даже на небольшие вариации значений исходных величин, а в рассматриваемом нами случае соответствует высокой чувствительности полезной работы цикла Карно и его КПД к отклонениям от идеальности (потерям на трение). Эта связь с отклонениями от идеальности настолько велика, что с учетом всех потерь полезная работа цикла Карно приближается к нулю[7].

Примечания[править | править код]

  1. ↑ То есть без потерь, в первую очередь на трение.
  2. ↑ Карно цикл // Италия — Кваркуш. — М. : Советская энциклопедия, 1973. — (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров ; 1969—1978, т. 11).
  3. ↑ Сивухин, Т. II. Термодинамика и молекулярная физика, 2005, с. 94.
  4. Carnot S. Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance. — Paris: Gauthier-Villars, Imprimeur-Libraire, 1878. — 102 p. (фр.)
  5. ↑ Второе начало термодинамики. (Работы Сади Карно — В. Томсон — Кельвин — Р. Клаузиус — Л. Больцман — М. Смолуховский) / Под. ред. А. К. Тимирязева. — Москва—Ленинград: Государственное технико-теоретическое издательство, 1934. — С. 17—61.
  6. ↑ Сивухин, Т. II. Термодинамика и молекулярная физика, 2005, с. 113—114.
  7. Бэр Г. Д., Техническая термодинамика, 1977, с. 112.
  8. ↑ Кинан Дж., Термодинамика, 1963, с. 93.
  9. ↑ Николаев Г. П., Лойко А. Э., Техническая термодинамика, 2013, с. 172.
  10. ↑ Бахшиева Л. Т. и др., Техническая термодинамика и теплотехника, 2008, с. 148.
  11. ↑ Сивухин, Т. II. Термодинамика и молекулярная физика, 2005, с. 95.
  12. ↑ Сивухин, Т. II. Термодинамика и молекулярная физика, 2005, с. 113.
  13. ↑ Румер Ю. Б., Рывкин М. Ш., Термодинамика, статистическая физика и кинетика, 2000, с. 35.
  14. 1 2 Крестовников А. Н., Вигдорович В. Н., Химическая термодинамика, 1973, с. 63.

Литература[править | править код]

  • Carnot S. Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance. — Paris: Gauthier-Villars, Imprimeur-Libraire, 1878. — 102 p. (фр.)
  • Бахшиева Л. Т., Кондауров Б. П., Захарова А. А., Салтыкова В. С. Техническая термодинамика и теплотехника / Под ред. проф А. А. Захаровой. — 2-е изд., испр. — М.: Академия, 2008. — 272 с. — (Высшее профессиональное образование). — ISBN 978-5-7695-4999-1.
  • Бэр Г. Д. Техническая термодинамика. — М.: Мир, 1977. — 519 с. (недоступная ссылка)
  • Кинан Дж. Термодинамика / Пер с англ. А. Ф. Котина под ред. М. П. Вукаловича. — М.—Л.: Госэнергоиздат, 1963. — 280 с.
  • Ландау Л. Д., Лифшиц Е. М. Статистическая физика. Часть 1. — Издание 3-е, доп. — М.: Наука, 1976. — 584 с. — («Теоретическая физика», том V).
  • Крестовников А. Н., Вигдорович В. Н. Химическая термодинамика. — 2-е изд., испр. и доп. — М.: Металлургия, 1973. — 256 с.
  • Николаев Г. П., Лойко А. Э. Техническая термодинамика. — Екатеринбург: УрФУ, 2013. — 227 с.
  • Румер Ю. Б., Рывкин М. Ш. Термодинамика, статистическая физика и кинетика. — 2-е изд., испр. и доп. — Новосибирск: Изд-во Носиб. ун-та, 2000. — 608 с. — ISBN 5-7615-0383-2.
  • Савельев И. В. Курс общей физики:Молекулярная физика и термодинамика. — М.: Астрель, 2001. — Т. 3. — 208 с. — 7000 экз. — ISBN 5-17-004585-9.
  • Сивухин Д. В. Общий курс физики. — Т. II. Термодинамика и молекулярная физика. — 5 изд., испр.. — М.: ФИЗМАТЛИТ, 2005. — 544 с. — ISBN 5-9221-0601-5.

Источник