Термодинамические циклы паросиловых установок

Термодинамические циклы паросиловых установок thumbnail

Как было сказано выше, реакторную установку можно представить в виде тепловой машины, в которой осуществляется некий термодинамический цикл.

Теоретическим циклом современной паросиловой установки является цикл Ренкина.

Пароводяная смесь образовавшаяся в результате передачи тепловой энергии воде в активной зоне поступает в Барабан – сепаратор где происходит разделение пара и воды. Пар направляется в паровую турбину, где расширяясь адиабатно, совершает работу. Из турбины отработавший пар направляется в конденсатор. Там происходит отдача теплоты охлаждающей воде, проходящей через конденсатор. Вследствие этого пар полностью конденсируется. Полученный конденсат непрерывно засасывается насосом из конденсатора, сжимается и направляется вновь в барабан сепаратор.

Конденсатор играет двоякую роль в установке.

Во-первых, он имеет паровое и водяное пространство, разделенные поверхностью, через которую происходит теплообмен между отработавшим паром и охлаждающей водой. Поэтому конденсат пара может быть использован в качестве идеальной воды, не содержащей растворенных солей.

Во-вторых, в конденсаторе вследствие резкого уменьшения удельного объема пара при его превращении в капельножидкое состояние наступает вакуум, который будучи поддерживаемым в течение всего времени работы установки, позволяет пару расширяться в турбине еще на одну атмосферу (Рк 0,04-0,06 бар) и совершать за счет этого дополнительную работу.

Цикл Ренкина в T-S диаграмме.

Синяя линия в Т-S диаграмме воды является разделительной, при энтропии и температуре, соответствующим точкам, лежащим на диаграмме выше этой линии, существует только пар, ниже пароводяная смесь.

Влажный пар в конденсаторе полностью конденсируется по изобаре p2=const (точка 3). Затем вода сжимается насосом от давления P2 до давления P1, этот адиабатный процесс изображен в T-S-диаграмме вертикальным отрезком 3-5.

Длина отрезка 3-5 в T-S-диаграмме весьма мала, так как в области жидкости, изобары (линии постоянного давления) в T-S-диаграмме проходят очень близко друг от друга. Благодаря этому при изоэптропном (при постоянной энтропии) сжатии воды, температура воды возрастает менее чем на 2-3 єС, и можно с хорошей степенью приближения считать, что в области жидкости изобары воды практически совпадают с левой пограничной криво (синяя линия); поэтому зачастую при изображении цикла Ренкина в Т-S-диаграмме изобары в области жидкости изображают сливающимися с левой пограничной кривой. Малая величина отрезка адиабаты 3-5 свидетельствует о малой работе, затрачиваемой насосом на сжатие воды. Малая величина работы сжатия по сравнению с величиной работы, производимой водяным паром в процессе расширения 1-2, является важным преимуществом цикла Ренкина.

Из насоса вода под давлением P2 поступает в барабан сепаратор, а затем в реактор, где к ней в изобарно (процессе 5-4 P1=const) подводится тепло. Вначале вода в реакторе нагревается до кипения (участок 5-4 изобары P1=const) а затем, по достижении температуры кипения, происходит процесс парообразования (участок 4-3 изобары P2=const). Пароводяная смесь поступает в барабан-сепаратор, где происходит разделение воды и пара. Насыщенный пар, из барабана сепаратора поступает в турбину. Процесс расширения в турбине изображается адиабатой 1-2 (Этот процесс относится к классическому циклу Ренкина в реальной установке процесс расширения пара в турбине несколько отличается от классического). Отработанный влажный пар поступает в конденсатор, и цикл замыкается.

С точки зрения термического к.п.д. цикл Ренкина представляете менее выгодным, чем цикл Карно, изображенный выше, поскольку степень заполнения цикла (равно как и средняя температур подвода тепла) для цикла Ренкина оказывается меньше, чем в случае цикла Карно. Однако с учетом реальных условий осуществления экономичность цикла Ренкина выше экономичности соответствующего цикла Карно во влажном паре.

Для того чтобы увеличить термический к.п.д. цикла Ренкина, часто применяют так называемый перегрев пара в специальном элемент установки – пароперегревателе, где пар нагревается до температуры, превышающей температуру насыщения при данном давлении P1. В этом случае средняя температура подвода тепла увеличивается по сравнению с температурой подвода тепла в цикле без перегрева и, следовательно, термический к.п.д. цикла возрастает. Цикл Ренкина с перегревом пара является основным циклом теплосиловых установок, применяемых в современной теплоэнергетике.

Поскольку в настоящее время не существует промышленных энергетических установок с ядерным перегревом пара (перегрев пара непосредственно в активной зоне ядерного реактора), то для одноконтурных ядерных реакторов BWR и РБМК используется цикл с промежуточным перегревом пара.

Т-S диаграмма цикла с промежуточным перегревом пара.

Для повышения КПД в цикле с промежуточным перегревом пара, используется двух ступенчатая турбина, состоящая из цилиндра высокого давления и нескольких (4 для РБМК) цилиндров низкого давления. Пар из барабана сепаратора направляется в цилиндр высокого давления (ЦВД), часть пара отбирается для перегрева. Расширяясь в цилиндре высокого давления процесс на диаграмме 1-6, пар совершает работу. После ЦВД пар направляется в пароперегреватель, где за счет охлаждения отобранной в начале части пара, осушается и нагревается до более высокой температуры, (но уже при более низком давлении, процесс 6-7 на диаграмме) и поступает в цилиндры низкого давления турбины (ЦНД). В ЦНД пар расширяясь, снова совершает работу (процесс 7-2 на диаграмме) и поступает в конденсатор. Остальные процессы соответствуют процессам в выше рассмотренном цикле Ренкина.

Регенеративный цикл.

Малое значение КПД цикла Ренкина по сравнению с циклом Карно связано с тем, что большое количество тепловой энергии при конденсации пара передается охлаждающей воде в конденсаторе. Для снижения потерь часть пара из турбины отбирается и направляется на регенерационные подогреватели, где тепловая энергия, высвобождаемая при конденсации отобранного пара, используется для подогрева воды, полученной после конденсации основного парового потока.

Читайте также:  Читать книгу ник перумов цикл кольцо тьмы

В реальных паросиловых циклах регенерация осуществляется с помощью регенеративных, поверхностных или смешивающих, теплообменников, в каждый из которых поступает пар из промежуточных ступеней турбины (так называемый регенеративный отбор). Пар конденсируется в регенеративных теплообменниках, нагревая питательную воду, поступающую в реактор. Конденсат греющего пара смешивается с основным потоком питательной воды.

Источник

Паросиловые установки занимают ведущее место в общей энергетике страны и относятся к двигателям внешнего сгорания. Сжигание топлива здесь организовано в специальных паровых котлах, расположенных отдельно. Продукты сгорания являются лишь промежуточным теплоносителем (в отличие от ДВС и ГТУ), а рабочим телом служат обычно вода и водяной пар.

Рис. 1.82. Схема паросиловой установки, работающей по циклу Ренкина

На рис. 1.82 приведена схема паросиловой установки, работающей по циклу Ренкина с перегревом пара. Установка включает в себя паровой котел 1, где в результате сжигания топлива выделяется большое количество теплоты, которое передается находящейся здесь воде и расходуется на ее нагрев и превращение в водяной пар. Далее насыщенный пар направляется в трубки специального теплообменника (пароперегреватель 2), где получает дополнительную теплоту от дымовых газов, протекающих в межтрубном пространстве, и перегревается. Перегретый пар при высоком давлении и температуре направляется в паровую турбину 3, где расширяется, совершая механическую работу, которая идет на привод электрогенератора 4. Давление и температура пара при этом понижаются, и отработавший пар попадает в другой теплообменник — конденсатор 5, где, отдавая теплоту охлаждающей воде, полностью конденсируется, а затем насосом 6 образовавшийся конденсат снова закачивается в паровой котел, и цикл повторяется. Отметим, что в течение цикла рабочее тело дважды меняет свое агрегатное состояние, причем процессы кипения и конденсации протекают при постоянстве давлений в паровом котле и конденсаторе.

На рис. 1.83 на фоне пограничных кривых приведены диаграммы описанного цикла, наглядно иллюстрирующие все особенности протекающих процессов. Цикл обычно начинают с процесса расширения пара в турбине. Если пренебрегать необратимыми потерями, то процесс 1—2 — это процесс адиабатного расширения, изображенный на диаграмме h—s отрезком вертикали. В процессе расширения давление и температура пара уменьшаются до Т2 = Тн2 и р2, как правило, пар становится влажным со степенью сухости х» 0,95.

Процесс 2—3 — это конденсация отработавшего пара; как видно из схемы установки, он протекает при постоянстве давления р2 в конденсаторе. Температура при этом остается неизменной и равной Тн 2. При работе насоса давление конденсата увеличивается до ръ = рх, а температура Т, удельный объем v и энтальпия h практически не изменяются (v4 = v>3, h4 = h3), поскольку воду можно считать несжимаемой жидкостью. Под высоким давлением вода попадает в паровой котел и сначала нагревается там до температуры насыщения ТнХ при давлении рнХ (процесс 4—5), а затем выкипает (процесс 5—6). Оба эти процесса проходят при р = const и сопровождаются увеличением энтальпии. Энтальпия пара еще более увеличивается в процессе его изобарного перегрева 6—1 в пароперегревателе. Завершая описание процессов, отметим, что на рис. 1.83 левые части обеих диаграмм приведены в утрированно растянутом по абсциссе масштабе. Если изобразить процессы в одинаковом масштабе, то и линии 3—4 и 4—5 практически сольются с осью ординат.

Исходными параметрами цикла обычно являются значения рх, Тх и р2. Это позволяет с помощью таблиц или диаграммы h—s определить все (р, v, Т, h и 5) параметры характерных точек цикла и

Рис. 1.83. Диаграммы цикла Ренкина с перегревом пара рассчитать основные его характеристики: количество подводимой и отводимой q2 за цикл теплоты, термический КПД цикла г|„ удельный расход пара d0, удельный расход теплоты q и др.

Количество подводимой и отводимой теплоты представляет собой разницу энтальпий соответствующих процессов:

Теперь найдем

Из формулы (и особенно из диаграммы на рис. 1.83) видно, что эффективность цикла Ренкина увеличивается с увеличением температуры Г, и давления /?, в начальной точке (при этом увеличивается hx) и при уменьшении давления р2 в конденсаторе (при этом уменьшаются h2 и h3).

Удельным расходом пара d0 называют количество пара, кг, необходимого для получения 1 кВт • ч энергии:

Удельный расход теплоты — это количество теплоты, кДж, необходимое для получения 1 кВт • ч работы:

Заметим, что в действительности процесс расширения пара в турбине сопровождается потерями на трение и не является изо- энтропным. В соответствии со вторым законом термодинамики он сопровождается увеличением энтропии s, и это увеличение тем больше, чем больше потери на внутреннее трение. На диаграмме h—s (см. рис. 1.83) этот необратимый процесс показан условно линией 1—2а. Полезная работа при этом определится разницей энтальпий /г, — /г2д, а отношение этой действительной работы к теоретической, равной /г, — h2, называют внутренним относительным КПД:

Читайте также:  Идеальный газ совершает цикл состоящий из изохоры изотермы изобары

Этот коэффициент характеризует степень совершенства действительного процесса расширения в турбине по сравнению с идеальным.

Источник

Студопедия

КАТЕГОРИИ:

Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

ВВЕДЕНИЕ

Анализ необратимых циклов тепловых машин целесообразно проводить методом классической термодинамики, который позволяет получить важные для практики прогнозы на начальной стадии проектирования энергетических систем, или указать наиболее эффективные пути совершенствования существующего энергетического оборудования. Ценность анализа энергетической эффективности отдельных процессов, составляющих термодинамический цикл, состоит в возможности оценки локальной необратимости на термодинамическое совершенство цикла, реализуемого в энергетической установке. Эту информацию можно получить, используя эксергетический метод, основанный на оценке потерь работоспособности в отдельных процессах по отношению к значению эксергии до и после процесса. Такой подход позволяет акцентировать внимание исследователя на тех узлах энергетической установки, совершенствование которых обеспечит максимальное повышение эффективности цикла.

На основании результатов анализа представляется возможным определить энергетическую эффективность и составить представление о технико-экономических характеристиках, отражающих массогабаритные показатели теплообменных аппаратов, качество материалов, а также конструктивное исполнение отдельных узлов, входящих в состав энергетической установки.

 
 

Преобразование энергии органического или ядерного топлива в механическую энергию осуществляется в паровых силовых установках (п.с.у.), которые являются базой современной энергетики. Основным циклом, использующим водяной пар в качестве рабочего тела, реализуемого в паросиловой установке, является цикл Ренкина. Принципиальная схема простейшей паросиловой установки, работающей по циклу Ренкина, показана на рис. 1, теоретический цикл – на рис. 2.

Рис. 1. Принципиальная тепловая схема паросиловой установки

Начальное состояние рабочего тела в цикле характеризуется параметрами воды, соответствующими точке 3. Вода сжимается насосом Н (процесс 3 – 4)и подается в водяной экономайзер ВЭ при давлении (вследствие небольшого повышения температуры воды при ее сжатии точки 3 и 4на – -диаграмме почти совпадают). Здесь за счет теплоты уходящих газов вода нагревается при постоянном давлении (процесс 4 – 5) до температуры кипения (насыщения) (точка 5), затем в котле К происходит парообразование при (процесс 56). Полученный сухой насыщенный пар в пароперегревателе ПП перегревается при том же постоянном давлении р1, которое создается насосом,

 
 

Рис. 2. Основной цикл паровой установки (цикл Ренкина):

а– в р v-координатах; б – Т s-координатах

до требуемой температуры (процесс 61). Перегретый пар с параметрами , , по паропроводу поступает в паровую турбину Т, где происходит адиабатное расширение до давления с совершением технической работы (процесс 1 – 2). После турбины пар с энтальпией поступает в конденсатор, который представляет собой трубчатый теплообменник. Наружная поверхность трубок конденсатора омывается паром, а внутри трубок непрерывно циркулирует охлаждающая вода.

В конденсаторе при помощи охлаждающей воды от пара отнимается теплота парообразования , и пар переходит при постоянных давлении и температуре в жидкость с энтальпией (процесс конденсации 2 – 3). В дальнейшем цикл повторяется. Рассмотренный основной цикл паросиловой установки называется циклом Ренкина, или простым конденсационным циклом.

Таким образом, в отличие от ДВС в паросиловой установке продукты сгорания топлива непосредственно не участвуют в цикле, а являются лишь источником теплоты. Рабочим телом служит пар какой-либо жидкости (главным образом воды).

Для паросиловых установок в заданном температурном интервале термодинамически наиболее выгодным циклом также мог бы быть цикл Карно. Однако его осуществление связано с большими трудностями. Цикл Карно относительно проще было бы осуществить в области влажного пара (цикл a56ba рис. 2). Это объясняется тем, что в области влажного пара изотермные процессы совпадают с изобарными и могут быть реально осуществлены в котле и конденсаторе. В этом цикле конденсация пара в изотермном процессе происходит неполностью, вследствие чего в последующем адиабатном процессе а – 5 сжимается не вода, как в цикле Ренкина, а влажный пар, имеющий относительно большой объем.

Сжатие пара связано с наличием специального компрессора и затратой относительно большой работы на сжатие (пл. ), что значительно снижает общую экономичность установки и практически обесценивает термодинамические выгоды цикла Карно. По этой причине цикл Карно не получил практического осуществления и сохраняет лишь теоретическое значение как эталонный цикл, имеющий в заданном интервале температур максимальный термический КПД.

В рассмотренном выше цикле Ренкина осуществляется полная конденсация пара с последующим адиабатным сжатием 3 – 4 конденсата в насосе, что значительно уменьшает работу на адиабатное сжатие (пл. ). Термический КПД цикла Ренкина может быть вычислен по общему выражению (1.185).

Теплота сообщается на участках 4 – 5 6 1 (см. рис. 2, б),при постоянном давлении ее можно определить из выражения:

, (1)

где – энтальпия пара, поступающего в турбину, измеряемая пл. 00’45612’0; – энтальпия поступающей в котел жидкости пл. 00’ЗЗ’О.

Теплота, отдаваемая паром в конденсаторе охлаждающей воде при постоянном давлении на участке 2 3′:

, (2)

где – энтальпия пара, выходящего из турбины, измеряется пл. ОО’322’О.

Подставив значения и , получим:

. (3)

Это выражение получено без учета работы, затрачиваемой на привод питательного насоса. При сравнительно высоких давлениях эту работу следует учитывать.

Легко видеть, что подведенная в цикле теплота будет измеряться пл. 45612’3’4, отведенная теплота – пл. 22’3’32, а полезно использованная теплота – пл. 456124.

Читайте также:  Цикл с параметром задача вычисление суммы чисел
 
 

Удобно определять КПД цикла паросиловой установки при помощи -диаграммы, где и определяются по известным начальным и конечным параметрам адиабатного процесса расширения пара в турбине 1 2 (рис. 3); определяется из таблиц насыщенного пара по температуре , соответствующей давлению .

Рис. 3. График обратимого адиабатного процесса расширения пара в турбине в i-s-координатах

Важной расчетной характеристикой является удельный расход пара , представляющий собой отношение часового расхода пара в идеальном двигателе к выработанной электроэнергии N. Так как 1 кг пара совершает в теоретическом цикле кДж/кг полезной работы, а 1 кВт-ч – 3600 кДж, то из уравнения теплового баланса идеального двигателя получаем выражение для теоретического расхода пара (в килограммах на киловатт/час):

. (4)

Непосредственно из этого выражения невозможно выявить характер влияния параметров состояния пара на величину Ренк.Для этого воспользуемся понятием эквивалентного цикла Карно. С увеличением интервала средних температур цикла и термический КПД любого цикла увеличивается.

Повышение средней температуры в процессе подвода теплоты в цикле Ренкина можно осуществить двумя способами: повышением начального давления пара и повышением температуры перегрева .

В первом случае (рис. 4) повышение обусловливается увеличением температуры парообразования от до . Так, увеличение начального давления от 2,0 до 10,0 МПа, для которых соответственно =212°С и =310°С при одной и той же температуре перегретого пара =500°Си одном и том же давлении в конденсаторе = 0,004 МПа повышает, Ренкот0,368 до 0,426, т. е. на 16,2%.

Неблагоприятным следствием повышения начального давления является увеличение степени влажности пара в конце расширения или уменьшение степени сухости пара ( ). Выделяющиеся в последних ступенях турбины капли влаги вызывают механический износ (эрозию) рабочих лопаток и снижают общий КПД турбины.

При повышении температуры перегретого пара ( ) также увеличивается средняя температура впроцессе подвода теплоты ( ) (рис. 5). Однако предел повышения температуры пара ограничивается жаропрочностью металла. Повышение температуры перегрева пара дает заметное снижение конечной влажности пара ( ). В связи с этим наиболее благоприятные результаты

 
 

получаются при одновременном повышении давления и температуры , т. е. при использовании пара высоких начальных параметров.

Рис. 4. Влияние начального давления пара на термический КПД цикла п. с. у. Рис. 5. Влияние температуры перегретого пара на термический КПД цикла п. с. у.

Так, если в 1920 г. в паротурбинных установках применялся пар с р1 = 2МПа, = 300°С; в 1930–1940 гг. = 3,0…6,0 МПа,
= 450…500°С, то в настоящее время = 24…30 МПа,
t1 = 550…650°С. Развитие современных паросиловых установок электрических станций происходит в направлении повышения начальных параметров водяного пара.

Снижение средней температуры в процессе отвода теплоты (рис. 6) лимитируется температурой окружающей среды, которая практически является низшим (холодным) источником в теплосиловых установках. Если исходить из температурных условий окружающей среды (воздух, вода рек и озер), то низшая температура в цикле может быть 20 ¸ 30°С, что соответствует для водяного пара конечному давлению = 0,0024…0,0043 МПа.

Следовательно, работа паросиловой установки связана с поддержанием в конденсаторе паровой турбины относительно глубокого вакуума (порядка 97…95%). С ухудшением вакуума (повышается ), как это видно из рис. 6, термический КПД цикла уменьшается .

Таким образом, для увеличения термического КПД цикла Ренкина необходимо повышать начальные параметры пара , и снижать конечное давление пара . Так как нет возможности увеличивать за счет уменьшения , то практически этой цели можно достигнуть только за счет увеличения и . Оптимальные параметры цикла выбираются на основании технико-экономических расчетов.

 
 

В отличие от теоретического цикла паросиловой установки, который состоит из обратимых процессов, действительные циклы протекают необратимо. Так, расширение пара в турбине происходит при наличии потерь, связанных главным образом с трением пара о стенки и с другими гидродинамическими явлениями, на преодоление которых затрачивается часть работы расширения. Работа трения превращается в теплоту, повышает энтальпию пара в конечном состоянии от до .Поэтому действительный процесс адиабатного расширения пара в турбине, протекающий необратимо с увеличением энтропии, изобразится не прямой 12, аусловной кривой 1 – 2Д (рис. 7).

Рис. 6. Влияние конечного давления пара на термический КПД цикла п. с. у. Рис. 7. График необратимого адиабатного давления пара в турбине в i – s-координатах

Очевидно, полезная работа в действительном двигателе (так называемая внутренняя, или индикаторная, работа) будет меньше работы в идеальном .

Тогда, согласно (3), относительный внутренний КПД паровой турбины:

. (5)

Для современных турбин =0,80…0,90.

Как было показано выше, отношение полезно использованной теплоты в реальном двигателе к теплоте, затраченной в цикле, называется абсолютным внутренним КПД , который, согласно (1), для цикла Ренкина:

(6)

или, согласно (5):

. (7)

Если учесть, что для параметров пара = 17,0 МПа, = 550°С,
= 0,004 МПа, которые сейчас широко используются на тепловых электрических станциях, = 0,46 и, считая = 0,85, = 0,46 • 0,85 = 0,39, т. е. только 39% теплоты, подводимой в цикле, превращается в полезную работу.

Дата добавления: 2015-04-24; Просмотров: 3271; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Рекомендуемые страницы:

Читайте также:

Источник