Тепловые насосы цикл теплового насоса отопительный коэффициент

Главный фактор при выборе того или иного типа – КПД теплового насоса для отопления и ГВС. Он зависит от типа теплового насоса, условий работы, температуры подогрева и других факторов.
Важно знать продуктивность работы климатического оборудования. Ведь вам не хочется потратить круглую сумму на покупку, установку и подключение теплового насоса, а потом обнаружить что придется догреваться с помощью котла или конвекторов.
Виды тепловых насосов
Принцип работы тепловых насосов одинаковый, но они отличаются по двум параметрам – откуда берут тепло и куда отдают. По отбору тепла они делятся на три типа:
- Грунтовые (геотермальные);
- Водяные;
- Воздушные.
Нагревают они воздух или воду. Поэтому есть такие виды тепловых насосов:
- Воздух-воздух;
- Воздух-вода;
- Вода-воздух;
- Вода-вода;
- Грунт-воздух;
- Грунт-вода.
Цикл теплового насоса простыми словами
Упрощенная схема принципа работы теплового насоса
Тепловой насос не производит тепло как конвектор или котел. Он переносит его из одной среды в другую. Поэтому КПД теплового насоса для отопления и ГВС выше 100%. Это значит, что на 1 кВт электроэнергии он выдаст больше 1 кВт тепла.
Это не нарушает принцип сохранения энергии, так как тепловой насос – не замкнутая система. Он потребляет один вид энергии и переносит другой.
По строению тепловые насосы бывают разными, каждый производитель использует свои ноу-хау, у каждой их марки есть свои плюсы и минусы.
Зависимость КПД от температуры нагрева
По общепринятым стандартам для отопления дома с помощью радиаторов и горячего водоснабжения нужна вода температурой 50-55 градусов. А вот для отопления теплыми полами – с температурой 30-35 градусов.
Обычно вода в дом поступает с температурой до +5 градусов, поэтому для ее подогрева до разных температур нужен разный объем тепловой энергии. И от этой разницы зависит КПД теплового насоса.
В статье указаны коэффициенты для нагрева воды на 50 градусов. Если нужно просчитать этот уровень для подогрева воды на 30 градусов, КПД теплового насоса стоит умножить на 1,5.
Для теплого пола входящую в дом воду достаточно нагреть на 30 градусов, чтобы обеспечить мягкое отопление.
КПД теплового насоса грунт-вода и грунт-воздух
Реальный КПД грунтового теплонасоса лежит в пределах 400-800%, но бывают и редкие исключения. Высоких показателей эффективности можно достичь если почва получает тепло от солнечного света и в ней уложено геотермальное поле, а не пробурены скважины.
В случае со скважинным тепловым насосом, чем больше расстояние между ними, тем выше КПД. Разница в этом случае составит 50-100% от номинального значения.
Особенностью геотермальных тепловых насосов есть то, что они находятся в неподвижной среде. Если неправильно рассчитана мощность теплового насоса, количество скважин или площадь и глубина геотермального поля, произойдет следующее. Земля начнет промерзать и не успевать получать тепло, из-за чего КПД грунтового теплонасоса будет неуклонно падать и со временем опустится ниже 100%.
Так как магистраль находится в земле неподвижно, грунтовый тепловой насос может выморозить почву
КПД теплового насоса вода-вода и вода-воздух
Средний КПД тепловых насосов вода-вода и вода-воздух равен 400%, но он зависит от того, насколько прогрета вода. В водоемах ее температура может меняться от +1 зимой до +20 и выше летом. Поэтому минимальный КПД таких тепловых насосов может опускаться до 200%, а максимальный подниматься до 1000%.
Стоит учитывать, что летом тепловой насос практически не нужен, поэтому работать с КПД 1000% он не будет, это число используют формально.
Еще одна особенность водяных тепловых насосов в том, что водоемы медленно прогреваются и отдают тепло. Поэтому весной, когда вода не прогрета, у него будет низкий КПД, а осенью, когда она сохранила тепло – высокий КПД.
Водоемы медленно отдают тепло весной, а КПД водяного теплового насоса зависит от температуры воды.
КПД теплового насоса воздух-воздух и воздух-вода
КПД этого типа тепловых насосов сильно зависит от того, какова температура воздуха снаружи. К тому же, есть модели рассчитанные на работу при экстремально низких температурах. Например, низкотемпературный воздушный теплонасос, рассчитанный на отопление бассейна, дает КПД 230% при температуре -15 градусов Цельсия. Самые дешевые варианты будут иметь такой же КПД только при +5 – +10 градусов тепла.
Принцип работы теплового насоса воздух-воздух не очень отличается от устройства типа воздух-вода. Поэтому приведенные ниже значения можно использовать для обоих типов. КПД теплового насоса воздух-воздух среднего класса можно увидеть по этому графику:
На графике видна зависимость КПД теплового насоса воздух-вода в зависимости от температуры наружного воздуха и температуры нагрева воды
КПД теплового насоса в морозы
Есть мнение, что КПД теплового насоса в морозы снижается, но это не совсем так. Дело в том, что напрямую эффективность теплонасоса зависит от его типа и среды:
- Грунтовые тепловые насосы не меняют свой КПД так как температура почвы на глубине не изменяется.
- Водяные теряют КПД ближе к весне, так как вода в водоеме постепенно остывает.
- Воздушные тепловые насосы напрямую зависят от температуры воздуха, их КПД зависит от текущих условий.
Реальные значения КПД
В большинстве своем производители и дилеры тепловых насосов завышают показатели. КПД теплового насоса для отопления дома может отличаться в полтора раза (хотя такая разница и редкость). При выборе стоит учитывать, насколько проверенный перед вами производитель и тщательно изучать документацию.
Хоть принцип работы тепловых насосов примерно один и тот же, внутренне строение у них разное. Теплонасос может быть двухконтурным или одноконтурным, с разными типами компрессоров, использовать разный теплоноситель и т.д.
Мощность теплового насоса обычно определяет количество тепла, которое он может выдавать за определенный промежуток времени. Но у самых мощных моделей часто КПД выше, чем у аналогов. Разница не слишком велика, но иногда она важна.
Например, мощный воздушный тепловой насос сможет давать тепло с КПД 200% при -20 градусов, а аналогичный по строению, но менее мощный, при такой температуре даст только КПД 150%.
В этой статье мы рассказали, каковы ральный КПД и эффективность теплового насоса в зависимости от его типа. Вопросы, мнения, нарекания вы можете оставить в комментариях. Мы стараемся реагировать на них оперативно
Не забудьте поделиться публикацией в соцсетях!
Источник
Эффективность теплового насоса
Оборудование, которое позволяет использовать энергию природных источников, таких как воздух, грунтовые воды или земные недра, для отопления и нагрева воды называется тепловым насосом. Это сверхэффективное оборудование позволяет получить 4-5 кВт тепловой энергии на каждый киловатт затраченной электроэнергии.
От чего зависит КПД теплового насоса
Принцип действия теплового насоса схож с принципом действия холодильника. Но задача холодильника произвести холод, используя тепловую и электрическую энергию. А насос, используя низкотемпературный природный носитель и электричество, производит тепло. Подробнее принцип действия описан на этой странице.
Расчет КПД теплового насоса показывает удивительные результаты, если учитывается только затраченная на его работу электроэнергия. Как уже указывалось, на киловатт потребленной энергии приходится в 4-5 раз больше произведенной. Что это? КПД больше единицы – нарушение законов электродинамики? Нет. Дело в том, что не учтен источник низкопотенциального тепла. Ведь в своей работе насос использует и природную энергию. Поэтому при расчете мощность источника (Рист.) и энергия из электросети (Рс.) должны складываться. А формула расчета будет выглядеть таким образом:
η = Рвыход./ Рист.+ Рс.
И, конечно, он будет меньше единицы.
Но расчет КПД может быть затруднен. Например, геотермальный насос, КПД которого следует рассчитывать с учетом температуры земли. Земля в этом случае – источник тепла. Ее температура на глубине более 6м практически не изменяется, но точно определить ее достаточно трудно. Это затрудняет определение КПД.
Такая же ситуация с определением КПД тепловых насосов других типов, для которых точная оценка мощности низкопотенциальной энергии не возможна. Поэтому оценивают эффективность и производительность тепловых насосов, используя два специальных коэффициента – СОР и степень термодинамического совершенства.
СОР – точная оценка эффективности теплового насоса
Первый коэффициент СОР теплового насоса – это коэффициент преобразования (англ. Coefficient of Perfomance) или тепловой коэффициент. Им пользуются для того, чтобы оценить соотношение работы по преобразованию энергии низкопотенциального источника и произведенной на выходе энергии.
Второй коэффициент, степень термодинамического совершенства, отображает то, насколько реальный цикл работы близок к идеальному.
Коэффициент преобразования теплового насоса рассчитывается по формуле
СОР = Qпотреб. х A,
в которой Qпотреб. – количество тепла, полученное потребителем, А – работа, затраченная насосом. Последняя величина определяется температурой воздуха в конденсаторе и испарителе.
Зная СОР, или тепловой коэффициент теплового насоса, можно рассчитать, сколько работы нужно затратить на выработку необходимого количества тепла. Если, например, он равен 2, то оборудование произведет в 2 раза больше энергии, чем будет затрачено.
Величина СОР одного и того же насоса может меняться от сезона к сезону. Для оценки вводят сезонный коэффициент, обозначаемый SСОР. Он учитывает климатические условия и повышает точность оценки эффективности. Наиболее важен этот показатель для устройств типа «воздух-воздух». Меньше колебания этого коэффициента, если используются другие источники тепла. Наименее подвержен колебаниям СОР геотермального насоса, эффективность которого определяется малоизменяющейся температурой земных недр или грунтовых вод.
Тепловые насосы – оборудование будущего
Эффективность тепловых насосов превосходит эффективность любого другого энергетического оборудования, используемого для отопления и подогрева воды. Отопительный коэффициент теплового насоса в реальности может доходить до значений 6-8.
Если учесть постоянно возрастающую стоимость традиционных энергоносителей, то использование такого современного теплового оборудования с каждым годом будет приносить все более существенную экономию. Тепловой насос, использующий дешевую энергию из окружающей среды, отличается длительным сроком эксплуатации и низкими эксплуатационными затратами. За этим энергоэффективным и экологически чистым оборудованием будущее.
Заказать расчет стоимости геотермального насоса можно по телефону +7 495 132 2000 или заполнив онлайн-форму. Технический специалист вышлет Вам информацию на указанный электронный адрес.
Источник
Это устройство для переноса тепловой энергии от источника низкопотенциальной тепловой энергии (с низкой температурой) к потребителю (теплоносителю) с более высокой температурой. Термодинамически тепловой насос аналогичен холодильной машине. Однако, если в холодильной машине основной целью является производство холода путём отбора теплоты из какого-либо объёма испарителем, а конденсатор осуществляет сброс теплоты в окружающую среду, то в тепловом насосе картина обратная. Конденсатор является теплообменным аппаратом, выделяющим теплоту для потребителя, а испаритель – теплообменным аппаратом, утилизирующим низкопотенциальную теплоту: вторичные энергетические ресурсы и (или) нетрадиционные возобновляемые источники энергии.
Основу эксплуатируемого сегодня в мире парка теплонасосного оборудования составляют парокомпрессионные тепловые насосы, но применяются также и абсорбционные, электрохимические и термоэлектрические. Эффективность тепловых насосов принято характеризовать величиной безразмерного коэффициента трансформации энергии К тр, определяемого для идеального цикла Карно по следующей формуле:
Ktr= Tout/Tout-Tin
где – Tout и Тin температуры соответственно на выходе и на входе насоса.
где: Тоut-температурный потенциал тепла, отводимого в систему отопления или теплоснабжения, Тіn -температурный потенциал источника тепла, Кtr Коэффициент трансформации теплового насоса, или теплонасосной системы теплоснабжения (ТСТ) Ктр представляет собой отношение полезного тепла, отводимого в систему теплоснабжения потребителю, к энергии, затрачиваемой на работу теплонасосной системы теплоснабжения, и численно равен количеству полезного тепла, получаемого при температурах Тоut и Тin, на единицу энергии, затраченной на привод ТН или ТСТ. Реальный коэффициент трансформации отличается от идеального, описанного формулой (1 1), на величину коэффициента h, учитывающего степень термодинамического совершенства ГТСТ и необратимые потери энергии при реализации цикла. При построении зависимостей, степень термодинамического совершенства ТСТ h была принята равной 0,55, а температурный напор (разница температур хладона и теплоносителя) в конденсаторе и в испарителе тепловых насосов был равен 7 °C. Эти значения степени термодинамического совершенства h и температурного напора между хладоном и теплоносителями системы отопления и теплосбора представляются близкими к действительности с точки зрения учета реальных параметров теплообменной аппаратуры (конденсатор и испаритель) тепловых насосов, а также сопутствующих затрат электрической энергии на привод циркуляционных насосов, систем автоматизации, запорной и управляющей арматуры. В общем случае степень термодинамического совершенства теплонасосных систем теплоснабжения h зависит от многих параметров, таких, как: мощность компрессора, качество производства комплектующих теплового насоса и необратимых энергетических потерь, которые, в свою очередь, включают: – потери тепловой энергии в соединительных трубопроводах; – потери на преодоление трения в компрессоре; – потери, связанные с неидеальностью тепловых процессов, протекающих в испарителе и конденсаторе, а также с неидеальностью теплофизических характеристик хладонов; – механические и электрические потери в двигателях и прочее.
Как и холодильная машина, тепловой насос потребляет энергию на реализацию термодинамического цикла (привод компрессора). Коэффициент преобразования теплового насоса – отношение теплопроизводительности к электропотреблению – зависит от уровня температур в испарителе и конденсаторе. Температурный уровень теплоснабжения от тепловых насосов в настоящее время может варьироваться от 35 °C до 90°C . Что позволяет использовать практически любую систему отопления. Экономия энергетических ресурсов достигает 70 %. Промышленность технически развитых стран выпускает широкий ассортимент парокомпрессионных тепловых насосов тепловой мощностью от 5 до 1000 кВт.
Концепция тепловых насосов была разработана ещё в 1852 году выдающимся британским физиком и инженером Уильямом Томсоном (Лордом Кельвином) и в дальнейшем усовершенствована и детализирована австрийским инженером Петером Риттер фон Риттингером (Peter Ritter von Rittinger). Петера Риттера фон Риттингера считают изобретателем теплового насоса, ведь именно он спроектировал и установил первый известный тепловой насос в 1855 году. Но практическое применение тепловой насос приобрел значительно позже, а точнее в 40-х годах ХХ столетия, когда изобретатель-энтузиаст Роберт Вебер (Robert C. Webber) экспериментировал с морозильной камерой. Однажды Вебер случайно прикоснулся к горячей трубе на выходе камеры и понял, что тепло просто выбрасывается наружу. Изобретатель задумался над тем, как использовать это тепло, и решил поместить трубу в бойлер для нагрева воды. В результате Вебер обеспечил свою семью таким количеством горячей воды, которое они физически не могли использовать, при этом часть тепла от нагретой воды попадала в воздух. Это подтолкнуло его к мысли, что от одного источника тепла можно нагревать и воду, и воздух одновременно, поэтому Вебер усовершенствовал своё изобретение и начал прогонять горячую воду по спирали (через змеевик) и с помощью небольшого вентилятора распространять тепло по дому с целью его отопления. Со временем именно у Вебера появилась идея «выкачивать» тепло из земли, где температура не слишком изменялась в течение года. Он поместил в грунт медные трубы, по которым циркулировал фреон, который «собирал» тепло земли. Газ конденсировался, отдавал своё тепло в доме, и снова проходил через змеевик, чтобы подобрать следующую порцию тепла. Воздух приводился в движение с помощью вентилятора и распространялся по дому. В следующем году Вебер продал свою старую угольную печь.
В 40-х годах тепловой насос был известен благодаря своей чрезвычайной эффективности, но реальная потребность в нём возникла в период Арабского нефтяного эмбарго в 70-х годах, когда, несмотря на низкие цены на энергоносители, появился интерес к энергосбережению.
В процессе работы компрессор потребляет электроэнергию. Соотношение вырабатываемой тепловой энергии и потребляемой электрической называется коэффициентом трансформации (или коэффициентом преобразования теплоты) и служит показателем эффективности теплового насоса. Эта величина зависит от разности уровня температур в испарителе и конденсаторе: чем больше разность, тем меньше эта величина.
По этой причине тепловой насос должен использовать по возможности большее количество источника низкопотенциального тепла, не стремясь добиться его сильного охлаждения. В самом деле, при этом растёт эффективность теплового насоса, поскольку при слабом охлаждении источника тепла не происходит значительного роста разницы температур. По этой причине тепловые насосы делают так, чтобы масса низкотемпературного источника тепла была значительно большей, чем нагреваемая масса. Для этого, также, необходимо увеличивать площади теплообмена, чтобы перепад температур между источником тепла и холодным рабочим телом, а также между горячим рабочим телом и отапливаемой средой был поменьше. Это снижает затраты энергии на отопление, но приводит к росту габаритов и стоимости оборудования.
Проблема привязки теплового насоса к источнику низкопотенциального тепла, имеющего большую массу может быть решена введением в тепловой насос системы массопереноса, например, системы прокачки воды. Так устроена система центрального отопления Стокгольма.
Даже современные парогазотурбинные установки на электростанциях выделяют большое количество тепла, что и используется в когенерации. Тем не менее, при использовании электростанций, которые не генерируют попутное тепло (солнечные батареи, ветряные электростанции, топливные элементы) применение тепловых насосов имеет смысл, так как такое преобразование электрической энергии в тепловую более эффективно, чем использование обычных электронагревательных приборов.
В действительности приходится учитывать накладные расходы по передаче, преобразованию и распределению электроэнергии (то есть услуги электрических сетей). В результате отпускная цена электричества в 3-5 раз превышает его себестоимость, что приводит к финансовой неэффективности использования тепловых насосов по сравнению с газовыми котлами при доступном природном газе. Однако, недоступность углеводородных ресурсов во многих районах приводит к необходимости выбора между обычным преобразованием электрической энергии в тепловую и с помощью теплового насоса, который в данной ситуации имеет свои преимущества.
В зависимости от принципа работы тепловые насосы подразделяются на компрессионные и абсорбционные. Компрессионные тепловые насосы всегда приводятся в действие с помощью механической энергии (электроэнергии), в то время как абсорбционные тепловые насосы могут также использовать тепло в качестве источника энергии (с помощью электроэнергии или топлива).
В зависимости от источника отбора тепла тепловые насосы подразделяются на
1) Геотермальные (используют тепло земли, наземных либо подземных грунтовых вод
а) Замкнутого типа
Горизонтальный геотермальный тепловой насос
Коллектор размещается кольцами или извилисто в горизонтальных траншеях ниже глубины промерзания грунта (обычно от 1,20 м и более). Такой способ является наиболее экономически эффективным для жилых объектов при условии отсутствия дефицита земельной площади под контур.
Вертикальные
Коллектор размещается вертикально в скважины глубиной до 200 м. Этот способ применятся в случаях, когда площадь земельного участка не позволяет разместить контур горизонтально или существует угроза повреждения ландшафта.
Водные
Коллектор размещается извилисто либо кольцами в водоеме (озере, пруду, реке) ниже глубины промерзания. Это наиболее дешевый вариант, но есть требования по минимальной глубине и объёму воды в водоеме для конкретного региона.
б) Открытого типа
Подобная система использует в качестве теплообменной жидкости воду, циркулирующую непосредственно через систему геотермального теплового насоса в рамках открытого цикла, то есть вода после прохождения по системе возвращается в землю. Этот вариант возможно реализовать на практике лишь при наличии достаточного количества относительно чистой воды и при условии, что такой способ использования грунтовых вод не запрещён законодательством.
2) Воздушные (источником отбора тепла является воздух)
3) Использующие производное (вторичное) тепло (например, тепло трубопровода центрального отопления). Подобный вариант является наиболее целесообразным для промышленных объектов, где есть источники паразитного тепла, которое требует утилизации.
По виду теплоносителя во входном и выходном контурах насосы делят на шесть типов: «грунт-вода», «вода-вода», «воздух-вода», «грунт-воздух», «вода-воздух», «воздух-воздух».
Источник