При прямом цикле карно тепловая машина совершает работу 1000 дж

При прямом цикле карно тепловая машина совершает работу 1000 дж thumbnail

1. Вспоминай формулы по каждой теме

2. Решай новые задачи каждый день

3. Вдумчиво разбирай решения

Газ, совершающий цикл Карно, отдаёт холодильнику 70(%) теплоты, полученной от нагревателя. Температура нагревателя (T = 400) K. Найдите температуру холодильника. (Ответ дайте в кельвинах.)

Так как газ отдает 70(%) тепоты холодильнику, то только 30(%) идет на работу цикла.
Следовательно КПД равен (eta=30%). [eta=1-dfrac{T_{text{х}}}{T_{text{н}}}] Выразим температуру холодильника: [T_{text{х}}=T_{text{н}}cdot(1-eta)=400text{ К}cdot(1-0,3)=280 text{ К}]

Ответ: 280

В цикле Карно абсолютная температура нагревателя в 2,5 раза выше абсолютной температуры холодильника. Какая доля теплоты, полученной рабочим телом от нагревателя, передается холодильнику? (Ответ дайте в процентах.)

Из условия: [T_{text{п}}=2,5T_{text{х}}]
КПД в цикле Карно: [eta=1-dfrac{T_{text{х}}}{T_{text{н}}}] [eta = 1-dfrac{1T_{text{х}}}{2,5T_{text{х}}}=dfrac{1}{2,5}=0,6]
Следовательно, холодильнику передается теплоты: [1-eta=1-0,6=0,4]

Ответ: 40

Тепловая машина с КПД 40(%) за цикл работы отдает холодильнику 100 Дж. Какое количество теплоты за цикл машина получает от нагревателя? (Ответ дайте в джоулях, округлив до целых.)

КПД цикла можно найти по формуле: [eta=1-dfrac{Q_{text{х}}}{Q_{text{н}}}] Выразим количество теплоты, которое машина получает от нагревателя за цикл: [Q_{text{н}}=dfrac{Q_{text{х}}}{1-eta}] [Q_{text{н}}=dfrac{100text{ Дж}}{1-0,4} approx 167 text{ Дж}]

Ответ: 167

Температура холодильника тепловой машины 400 К, температура нагревателя на 600 К больше, чем у холодильника. Каков максимально возможный КПД машины? (Ответ дайте в процентах.)

Из условия: [T_{text{н}}=T_text{х}+400text{ К}] [T_{text{н}} = 600text{ К}+400text{ К}=1000text{ К}]
КПД в цикле Карно можно найти по формуле: [eta=1-dfrac{T_{text{х}}}{T_{text{н}}}] [eta = 1-dfrac{400text{ К}}{1000text{ К}}=0,6=60%]

Ответ: 60

Тепловая машина за один цикл совершает работу 20 Дж и отдаёт холодильнику количество теплоты 80 Дж. Температура нагревателя этой машины 600 К, а температура холодильника 300 К. Во сколько раз КПД идеальной тепловой машины, работающей при тех же температурах нагревателя и холодильника, больше КПД рассматриваемой тепловой машины?

КПД идеальной тепловой машины в цикле Карно можно найти по формуле: [eta_{max}=1-dfrac{T_{text{х}}}{T_{text{н}}}] [eta_{max} = 1-dfrac{300text{ К}}{600text{ К}}=1-0,5=0,5]
КПД рассматриваемой тепловой машины: [eta=dfrac{A_{text{цикл}}}{Q_{text{н}}}] Зная работу тепловой машины за цикл и количество теплоты, отданное холодильнику, можно найти количество теплоты, принятое нагревателем: [A_{text{цикл}}=Q_{text{н}}-Q_{text{х}}] [Q_{text{н}}=A_{text{цикл}}+Q_{text{х}}] [Q_{text{н}}=20text{ Дж}+80text{ Дж}=100 text{ Дж}] Найдем КПД рассматриваемой машины: [eta=dfrac{20text{ Дж}}{100text{ Дж}}=0,2] Найдем, во сколько раз КПД идеальной тепловой машины, работающей при тех же температурах нагревателя и холодильника, больше КПД рассматриваемой тепловой машины: [dfrac{eta_{max}}{eta}=frac{0,5}{0,2}=2,5]

Ответ: 2,5

Температура холодильника тепловой машины 800 К, температура нагревателя на 200 К больше, чем у холодильника. Каков максимально возможный КПД машины? (Ответ дайте в процентах.)

Из условия: [T_text{н}=T_text{х}+200text{ К}] [T_{text{н}}=800text{ К}+200text{ К}=1000text{ К}] КПД цикла Карно можно найти по формуле: [eta=1-dfrac{T_{text{х}}}{T_{text{н}}}] [eta =1-dfrac{800text{ Дж}}{1000text{ Дж}}=0,2]

Ответ: 20

Тепловая машина с КПД 30(%) за цикл работы отдаёт холодильнику количество теплоты, равное 50 Дж. Какое количество теплоты машина получает за цикл от нагревателя? (Ответ дайте в джоулях, округлив до десятых.)

КПД тепловой машины можно найти по формуле: [eta=1-dfrac{Q_{text{х}}}{Q_{text{н}}}] Выразим количество теплоты, которое машина получает за цикл от нагревателя: [Q_{text{н}}=dfrac{Q_{text{х}}}{1-eta}] [Q_text{н} =dfrac{50text{ Дж}}{0,7}=71,4 text{ Дж}]

Ответ: 71,4

Источник

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: принципы действия тепловых машин, КПД тепловой машины, тепловые двигатели и охрана окружающей среды.

Коротко говоря, тепловые машины преобразуют теплоту в работу или, наоборот, работу в теплоту.
Тепловые машины бывают двух видов — в зависимости от направления протекающих в них процессов.

1. Тепловые двигатели преобразуют теплоту, поступающую от внешнего источника, в механическую работу.

2. Холодильные машины передают тепло от менее нагретого тела к более нагретому за счёт механической работы внешнего источника.

Рассмотрим эти виды тепловых машин более подробно.

Тепловые двигатели

Мы знаем, что совершение над телом работы есть один из способов изменения его внутренней энергии: совершённая работа как бы растворяется в теле, переходя в энергию беспорядочного движения и взаимодействия его частиц.

При прямом цикле карно тепловая машина совершает работу 1000 дж

Рис. 1. Тепловой двигатель

Тепловой двигатель — это устройство, которое, наоборот, извлекает полезную работу из «хаотической» внутренней энергии тела. Изобретение теплового двигателя радикально изменило облик человеческой цивилизации.

Принципиальную схему теплового двигателя можно изобразить следующим образом (рис. 1). Давайте разбираться, что означают элементы данной схемы.

Рабочее тело двигателя — это газ. Он расширяется, двигает поршень и совершает тем самым полезную механическую работу.

Но чтобы заставить газ расширяться, преодолевая внешние силы, нужно нагреть его до температуры, которая существенно выше температуры окружающей среды. Для этого газ приводится в контакт с нагревателем — сгорающим топливом.

В процессе сгорания топлива выделяется значительная энергия, часть которой идёт на нагревание газа. Газ получает от нагревателя количество теплоты . Именно за счёт этого тепла двигатель совершает полезную работу .

Читайте также:  На графике представлен цикл теплового двигателя

Это всё понятно. Что такое холодильник и зачем он нужен?

При однократном расширении газа мы можем использовать поступающее тепло максимально эффективно и целиком превратить его в работу. Для этого надо расширять газ изотермически: первый закон термодинамики, как мы знаем, даёт нам в этом случае .

Но однократное расширение никому не нужно. Двигатель должен работать циклически, обеспечивая периодическую повторяемость движений поршня. Следовательно, по окончании расширения газ нужно сжимать, возвращая его в исходное состояние.

В процессе расширения газ совершает некоторую положительную работу . В процессе сжатия над газом совершается положительная работа (а сам газ совершает отрицательную работу ). В итоге полезная работа газа за цикл: .

Разумеется, должно быть , или (иначе никакого смысла в двигателе нет).

Сжимая газ, мы должны совершить меньшую работу, чем совершил газ при расширении.

Как этого достичь? Ответ: сжимать газ под меньшими давлениями, чем были в ходе расширения. Иными словами, на -диаграмме процесс сжатия должен идти ниже процесса расширения, т. е. цикл должен проходиться по часовой стрелке (рис. 2).

При прямом цикле карно тепловая машина совершает работу 1000 дж

Рис. 2. Цикл теплового двигателя

Например, в цикле на рисунке работа газа при расширении равна площади криволинейной трапеции . Аналогично, работа газа при сжатии равна площади криволинейной трапеции со знаком минус. В результате работа газа за цикл оказывается положительной и равной площади цикла .

Хорошо, но как заставить газ возвращаться в исходное состояние по более низкой кривой, т. е. через состояния с меньшими давлениями? Вспомним, что при данном объёме давление газа тем меньше, чем ниже температура. Стало быть, при сжатии газ должен проходить состояния с меньшими температурами.

Вот именно для этого и нужен холодильник: чтобы охлаждать газ в процессе сжатия.

Холодильником может служить атмосфера (для двигателей внутреннего сгорания) или охлаждающая проточная вода (для паровых турбин). При охлаждении газ отдаёт холодильнику некоторое количество теплоты .

Суммарное количество теплоты, полученное газом за цикл, оказывается равным . Согласно первому закону термодинамики:

где — изменение внутренней энергии газа за цикл. Оно равно нулю: , так как газ вернулся в исходное состояние (а внутренняя энергия, как мы помним, является функцией состояния). В итоге работа газа за цикл получается равна:

(1)

Как видите, : не удаётся полностью превратить в работу поступающее от нагревателя тепло. Часть теплоты приходится отдавать холодильнику — для обеспечения цикличности процесса.

Показателем эффективности превращения энергии сгорающего топлива в механическую работу служит коэффициент полезного действия теплового двигателя.

КПД теплового двигателя — это отношение механической работы к количеству теплоты , поступившему от нагревателя:

С учётом соотношения (1) имеем также

(2)

КПД теплового двигателя, как видим, всегда меньше единицы. Например, КПД паровых турбин приблизительно , а КПД двигателей внутреннего сгорания около .

Холодильные машины

Житейский опыт и физические эксперименты говорят нам о том, что в процессе теплообмена теплота передаётся от более нагретого тела к менее нагретому, но не наоборот. Никогда не наблюдаются процессы, в которых за счёт теплообмена энергия самопроизвольно переходит от холодного тела к горячему, в результате чего холодное тело ещё больше остывало бы, а горячее тело — ещё больше нагревалось.

При прямом цикле карно тепловая машина совершает работу 1000 дж

Рис. 3. Холодильная машина

Ключевое слово здесь — «самопроизвольно». Если использовать внешний источник энергии, то осуществить процесс передачи тепла от холодного тела к горячему оказывается вполне возможным. Это и делают холодильные
машины.

По сравнению с тепловым двигателем процессы в холодильной машине имеют противоположное направление (рис. 3).

Рабочее тело холодильной машины называют также хладагентом. Мы для простоты будем считать его газом, который поглощает теплоту при расширении и отдаёт при сжатии (в реальных холодильных установках хладагент — это летучий раствор с низкой температурой кипения, который забирает теплоту в процессе испарения и отдаёт при конденсации).

Холодильник в холодильной машине — это тело, от которого отводится теплота. Холодильник передаёт рабочему телу (газу) количество теплоты , в результате чего газ расширяется.

В ходе сжатия газ отдаёт теплоту более нагретому телу — нагревателю. Чтобы такая теплопередача осуществлялась, надо сжимать газ при более высоких температурах, чем были при расширении. Это возможно лишь за счёт работы , совершаемой внешним источником (например, электродвигателем (в реальных холодильных агрегатах электродвигатель создаёт в испарителе низкое давление, в результате чего хладагент вскипает и забирает тепло; наоборот, в конденсаторе электродвигатель создаёт высокое давление, под которым хладагент конденсируется и отдаёт тепло)). Поэтому количество теплоты, передаваемое нагревателю, оказывается больше количества теплоты, забираемого от холодильника, как раз на величину :

Таким образом, на -диаграмме рабочий цикл холодильной машины идёт против часовой стрелки. Площадь цикла — это работа , совершаемая внешним источником (рис. 4).

При прямом цикле карно тепловая машина совершает работу 1000 дж

Рис. 4. Цикл холодильной машины

Основное назначение холодильной машины — охлаждение некоторого резервуара (например, морозильной камеры). В таком случае данный резервуар играет роль холодильника, а нагревателем служит окружающая среда — в неё рассеивается отводимое от резервуара тепло.

Читайте также:  Обобщенный термодинамический цикл тепловых двигателей

Показателем эффективности работы холодильной машины является холодильный коэффициент, равный отношению отведённого от холодильника тепла к работе внешнего источника:

Холодильный коэффициент может быть и больше единицы. В реальных холодильниках он принимает значения приблизительно от 1 до 3.

Имеется ещё одно интересное применение: холодильная машина может работать как тепловой насос. Тогда её назначение — нагревание некоторого резервуара (например, обогрев помещения) за счёт тепла, отводимого от окружающей среды. В данном случае этот резервуар будет нагревателем, а окружающая среда — холодильником.

Показателем эффективности работы теплового насоса служит отопительный коэффициент, равный отношению количества теплоты, переданного обогреваемому резервуару, к работе внешнего источника:

Значения отопительного коэффициента реальных тепловых насосов находятся обычно в диапазоне от 3 до 5.

Тепловая машина Карно

Важными характеристиками тепловой машины являются наибольшее и наименьшее значения температуры рабочего тела в ходе цикла. Эти значения называются соответственно температурой нагревателя и температурой холодильника.

Мы видели, что КПД теплового двигателя строго меньше единицы. Возникает естественный вопрос: каков наибольший возможный КПД теплового двигателя с фиксированными значениями температуры нагревателя и температуры холодильника ?

Пусть, например, максимальная температура рабочего тела двигателя равна , а минимальная — . Каков теоретический предел КПД такого двигателя?

Ответ на поставленный вопрос дал французский физик и инженер Сади Карно в 1824 году.

Он придумал и исследовал замечательную тепловую машину с идеальным газом в качестве рабочего тела. Эта машина работает по циклу Карно, состоящему из двух изотерм и двух адиабат.

Рассмотрим прямой цикл машины Карно, идущий по часовой стрелке (рис. 5). В этом случае машина функционирует как тепловой двигатель.

При прямом цикле карно тепловая машина совершает работу 1000 дж

Рис. 5. Цикл Карно

Изотерма . На участке газ приводится в тепловой контакт с нагревателем температуры и расширяется изотермически. От нагревателя поступает количество теплоты и целиком превращается в работу на этом участке: .

Адиабата . В целях последующего сжатия нужно перевести газ в зону более низких температур. Для этого газ теплоизолируется, а затем расширяется адиабатно на учатке .

При расширении газ совершает положительную работу , и за счёт этого уменьшается его внутренняя энергия: .

Изотерма . Теплоизоляция снимается, газ приводится в тепловой контакт с холодильником температуры . Происходит изотермическое сжатие. Газ отдаёт холодильнику количество теплоты и совершает отрицательную работу .

Адиабата . Этот участок необходим для возврата газа в исходное состояние. В ходе адиабатного сжатия газ совершает отрицательную работу , а изменение внутренней энергии положительно: . Газ нагревается до исходной температуры .

Карно нашёл КПД этого цикла (вычисления, к сожалению, выходят за рамки школьной программы):

(3)

Кроме того, он доказал, что КПД цикла Карно является максимально возможным для всех тепловых двигателей с температурой нагревателя и температурой холодильника .

Так, в приведённом выше примере имеем:

В чём смысл использования именно изотерм и адиабат, а не каких-то других процессов?

Оказывается, изотермические и адиабатные процессы делают машину Карно обратимой. Её можно запустить по обратному циклу (против часовой стрелки) между теми же нагревателем и холодильником, не привлекая другие устройства. В таком случае машина Карно будет функционировать как холодильная машина.

Возможность запуска машины Карно в обоих направлениях играет очень большую роль в термодинамике. Например, данный факт служит звеном доказательства максимальности КПД цикла Карно. Мы ещё вернёмся к этому в следующей статье, посвящённой второму закону термодинамики.

Тепловые двигатели и охрана окружающей среды

Тепловые двигатели наносят серьёзный ущерб окружающей среде. Их повсеместное использование приводит к целому ряду негативных эффектов.

• Рассеяние в атмосферу огромного количества тепловой энергии приводит к повышению температуры на планете. Потепление климата грозит обернуться таянием ледников и катастрофическими бедствиями.
• К потеплению климата ведёт также накопление в атмосфере углекислого газа, который замедляет уход теплового излучения Земли в космос (парниковый эффект).
• Из-за высокой концентрации продуктов сгорания топлива ухудшается экологическая ситуация.

Это — проблемы в масштабе всей цивилизации. Для борьбы с вредными последствиями работы тепловых двигателей следует повышать их КПД, снижать выбросы токсичных веществ, разрабатывать новые виды топлива и экономно расходовать энергию.

Источник

subjects:physics:тепловые_машины

В современной технике механическую энергию получают главным образом за счёт внутренней энергии топлива. Устройства, в которых происходит преобразование внутренней энергии в механическую, называют тепловыми двигателями.

Примеры тепловых двигателей

КПД тепловой машины

Работа, совершаемая тепловой машиной, не может быть больше: $A = Q_{1} – |Q_{2}|$, т.к. рабочее тело, получая некоторое количество теплоты ($Q_{1}$) от нагревателя, часть этого количества теплоты (по модулю равную $|Q_{2}|$) отдаёт холодильнику. Отношение этой работы к количеству теплоты, полученному расширяющимся газом от нагревателя, называется коэффициентом полезного действия $eta$ тепловой машины.

Коэффициент полезного действия любой тепловой машины считается по формуле:
$$eta = frac{A}{Q_{1}}=frac{Q_{1}-|Q_{2}|}{Q_{1}} = 1 – frac{|Q_{2}|}{Q_{1}}$$

Для увеличения КПД, при расширении или сжатии газа должны быть использованы процессы, позволяющие исключить уменьшение энергии горячего тела, которое происходило бы без совершения работы. Такие процессы существуют — это изотермический и адиабатный процесс.

Читайте также:  Тепловая машина работающая по циклу карно при этом 80 тепла

Цикл Карно

Сади Карно искал пути решения актуальной для его времени задачи — установить причину несовершенства тепловых машин, найти пути наиболее эффективного их использования. Именно он, впервые предложил наиболее совершенный технический процесс, состоящий из изотерм и адиабат.

Схема цикла Карно

Прямой цикл Карно. Исходным состоянием рабочего тела двигателя является состояние точки 4. На участке 4—1 цикла рабочее тело сжимается адиабатически, т. е. без потерь теплоты. В точке 1 к нему начинают изотермически подводить теплоту $Q_{1}$ от высокотемпературного источника, в результате чего рабочее тело расширяется по линии 1—2. На участке 2—3 расширение рабочего тела продолжается уже без подвода теплоты, т. е. адиабатически. На участке 3—4 от рабочего тела с помощью источника низкой температуры отбирается теплота $Q_{2}$. В двигателях, работающих по разомкнутому циклу, когда теплоноситель в каждом цикле работы обновляется, процесс охлаждения заменяется процессом обновления теплоносителя.

Линия Состояние Описание
1-2 Изотерма
$T=T_{1}$
$dQ_{1}$
(нагревание)
$VUparrow$
От нагревателя поступает теплота $dQ_{1}$ (или $Q_{H}$), газ под поршнем изотермически расширяется.В начале процесса рабочее тело (газ) имеет температуру температуру нагревателя ($T_{H}$ или $T_{1}$). Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты $Q_{H}$ (или $Q_{1}$).
При этом объём рабочего тела увеличивается, оно совершает механическую работу, а его энтропия возрастает.
2-3 Адиабата

$dQ=0$
$VUparrow$

Газ изолирован от нагревателя и холодильника и адиабатически расширяется.Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой.
При этом температура тела уменьшается до температуры холодильника ($T_{X}$ или $T_{2}$), тело совершает механическую работу, а энтропия остаётся постоянной.
3-4 Изотерма
$T=T_{2}$
$dQ_{2}$
(охлаждение)
$VDownarrow$
Газ изотермически (при $T = T_{2}$) сжимается и отдает теплоту $dQ_{2}$ холодильнику.Рабочее тело, имеющее температуру холодильника ($T_{X}$ или $T_{2}$), приводится в контакт с холодильником и начинает изотермически сжиматься под действием внешней силы, отдавая холодильнику количество теплоты $Q_{X}$ (или $Q_{2}$).
Над телом совершается работа, его энтропия уменьшается.
4-1 Адиабата

$dQ=0$
$VDownarrow$

Газ изолирован и адиабатически сжимается.Рабочее тело отсоединяется от холодильника и сжимается под действием внешней силы без теплообмена с окружающей средой.
При этом его температура увеличивается до температуры нагревателя ($T_{H}$ или $T_{1}$), над телом совершается работа, его энтропия остаётся постоянной.

Иллюстрации цикла Карно

Цикл Карно

Максимальный КПД тепловой машины

Коэффициент полезного действия идеального цикла, как показал С.Карно, может быть выражен через температуру нагревателя ($T_{1}$) и холодильника ($T_{2}$). В реальных двигателях не удаётся осуществить цикл, состоящий из идеальных изотермических и адиабатных процессов. Поэтому КПД их цикла всегда меньше, чем КПД цикла Карно (при прочих равных условиях).
$$eta_{real}<eta_{ideal}=frac{T_{1}-T_{2}}{T_{1}}=1-frac{T_{2}}{T_{1}}$$

Из формулы видно, что КПД двигателей растёт с увеличением температуры нагревателя и с уменьшением температуры холодильника.

Если бы температура холодильника была равна абсолютному нулю, то КПД был бы равен 100%.
В современных двигателях обычно КПД увеличивают за счёт повышения температуры нагревателя.

Реальный КПД тепловых машин порядка 30-40%, в то время как теоретически можно получить 60-80%, при тех же условиях.

Обратный цикл Карно

В термодинамике холодильных установок и тепловых насосов рассматривают обратный цикл Карно.
При этом рабочим телом являются пары легкокипящих жидкостей – фенол, аммиак и т.п. Процесс перекачки теплоты от тел, помещенных в холодильную камеру, в окружающую среду происходит за счет затрат электроэнергии.

Обратный цикл Карно. В обратном цикле Карно те же процессы происходят в обратной последовательности. Исходное состояние рабочего тела теперь — точка 3. Адиабатически сжатое компрессором по линии 3—2 рабочее тело охлаждается изотермически по линии 2—1 и далее продолжает расширяться адиабатически по линии 1—4. На изотерме 4—3 к рабочему телу подводится теплота камеры охлаждения и оно возвращается к исходному состоянию точки 3.

При этом чем меньше разность температур между холодильной камерой и окружающей средой, тем меньше нужно затратить энергии для передачи теплоты от холодного тела к горячему и тем выше холодильный коэффициент.

Анализ обратного цикла Карно показывает, что передача теплоты от тела менее нагретого телу более нагретому возможна, но этот процесс требует соответствующей энергетической компенсации в системе, в виде затраченной работы или теплоты более высокого потенциала, способного совершить работу при переходе на более низкий потенциал.

Энтропия — часть внутренней энергии замкнутой системы или энергетической совокупности Вселенной, которая не может быть использована, в частности не может перейти или быть преобразована в механическую работу. Существует мнение, что мы можем смотреть на энтропию и как на меру беспорядка в системе.

Задачи

subjects/physics/тепловые_машины.txt

· Последние изменения: 2018/04/11 23:05 —

Источник