Парогазовые установки бинарных циклов

Парогазовые установки бинарных циклов thumbnail

В настоящее время при температуре газов на входе в газовые турбины 1000-1100 °С и на выходе из них 500-550 °С термодинамически наиболее эффективны бинарные ПГУ со сжиганием всего топлива в газотурбинных камерах сгорания. Такие ПГУ обеспечивают не только самый высокий к. п. д., но и наименьшую удельную стоимость; примерно половину стоимости составляет ГТУ, другую половину паровая часть. Преимуществами их являются также простота схемы, легкость автоматизации, маневренность (следствие умеренных параметров пара), возможность комплектно-блочной поставки оборудования и сооружения за короткие сроки. Их единственный «недостаток» – невозможность эксплуатации без надежных, высокоэффективных газовых турбин, так как автономная работа паротурбинной части, доля мощности которой и экономичность невелики, нецелесообразна и обычно не реализуется.

Рис. 1. Тепловая схема простейшей бинарной ПГУ.

1 – ГТУ; 2 – котел-утилизатор; 3 – паровая турбина; 4 – электрические генераторы; 5 – конденсатор паровой турбины; 6 – питательный насос; 7 – дымовая труба; 8-воздух из атмосферы; 9-топливо в камеру сгорания ГТУ.

В бинарной ПГУ, схема которой приведена на, рис. 1, все топливо сжигается в камере сгорания ГТУ, а пар в котле-утилизаторе генерируется и перегревается теплотой отра-ботавших в ГТУ газов. К. п. д. ПГУ можно записать как

ηпгу = ηгту +(1 – ηгту) ηку ηп

Экономичность бинарной ПГУ тем выше, чем выше к. п. д. ГТУ (начальная температура газов и совершенство турбомашин), к. п. д. котла-утилизатора зависящий в основном от температуры уходящих газов, и к. п. д. парового цикла %, зависящий от параметров пара и давления в конденсаторе.

Сжигание перед котлом дополнительного топлива и повышение температуры газов на входе в него позволяют выработать пар стандартных параметров (13 или 24 МПа, 540 °С) и осуществить промежуточный перегрев до 540 °С, что существенно повышает к. п. д. парового цикла. Однако при этом часть работы парового контура производится за счет теплоты дополнительно подведенного топлива с к. п. д. парового цикла, а цикл комбинированной установки перестает быть бинарным. Степень бинарности, которую можно оценить отношением теплоты, подведенной в паровой цикл от отработавших в ГТУ газов, к общему количеству подведенной в него теплоты, тем меньше, чем больше доля топлива, сжигаемого перед котлом, и относительный расход пара и меньше доля газотурбинной мощности и коэффициент избытка воздуха в уходящих газах. В пределе при полном использовании кислорода, содержащегося в отработавших в ГТУ газах, оптимальные параметры и структура парового цикла становятся близкими к традиционным.

Простейшие бинарные ПГУ мощностью до 1250 МВт целесообразно использовать для покрытия пиковой, а также полупиковой нагрузок. Низкие параметры пара и простота парового цикла облегчают работу в переменной части графика нагрузки с частыми пусками и остановами. Газотурбинная часть, дающая около 70% мощности блока, включается в сеть и нагружается за 15-25 мин. Паровая турбина в зависимости от начального теплового состояния принимает полную нагрузку через 0,5-1,5 ч после начала пуска.

Существенно повысить единичную мощность парогазовых блоков можно, увеличивая число ГТУ, работающих на одну паровую турбину, и увеличивая относительную мощность паровой части. Последнее связано со сжиганием перед котлом дополнительного топлива. При этом следует стремиться к использованию парового цикла высокого давления с промежуточным перегревом пара, который обеспечивает повышение к. п. д. паротурбинной установки и снижение влажности пара в последних ступенях, необходимое для мощных паровых турбин с предельными окружными скоростями и длинами лопаток.

Рис. 2. Тепловая схема мощной ПГУ с высокой степенью бинарности

1 – 9 – см. рис. 1; 10 – блок основных горелок котла; 11-смешивающий ПНД; 12 – дымососы котла; 13 – конденсатные насосы.

Парогазовые установки бинарных циклов

Наиболее подробно проработанная ПГУ мощностью 800 МВт состоит из двух ГТЭ-150, двух котлов производительностью 575 т/ч и одной паровой турбины с параметрами пара 13 МПа, 540/540 °С, развивающей в составе ПГУ мощность 450 МВт. Ее принципиальная схема показана на рис. 2. Простота схемы является одним из важных достоинств такой ПГУ.

Регенеративный подогрев питательной воды при принятой (и, конечно, при более высокой) степени бинарности термодинамически нецелесообразен, так как приводит к повышению температуры уходящих газов и снижению к. п. д. ПГУ. Вследствие этого система регенерации ограничена одним ПНД смешивающего типа, в котором питательная вода подогревается до 60-65 °С и деаэрируется. Отсутствие отборов пара на регенерацию не исключает использования серийных паровых турбин, а лишь ограничивает пропуск пара через их головные отсеки, что приводит к некоторому (на 10%) снижению их мощности по сравнению с номинальной.

В схеме отсутствуют жесткие технологические связи. Это обеспечивает высокую надежность, упрощает управление и возможность его автоматизации. При выходе из строя одной ГТУ или котла-утилизатора блок продолжает работать с половинной нагрузкой и близким к номинальному удельным расходом топлива. Схема и наличие перед котлом устройств для сжигания топлива обеспечивают возможность автономной работы котлов и всей паровой части при останове как одной, так и обеих ГТУ, и позволяют также осуществить разновременный ввод в действие паровой и газотурбинной частей (на случай, например, задержки с поставкой ГТУ). Разумеется, удельный расход топлива при автономной работе паровой части будет несколько выше, чем в традиционных блоках на те же параметры пара, и значительно выше, чем в парогазовом режиме.

Для ПГУ-800 разрабатывается котел прямоточного типа. Он представляет собой чисто конвективный аппарат, который может быть выполнен так же, как конвективные шахты обычных энергетических котлов. Небольшие тепловые нагрузки поверхностей теплообмена создают возможность обеспечения его высокой надежности в эксплуатации. Для получения приемлемых массогабаритных показателей котла при небольших температурных напорах в экономайзерных и испарительных поверхностях нагрева целесообразно использовать оребренные трубы. Сжигание дополнительного топлива при работе в комбинированном режиме можно организовать в неэкранированном газоходе с помощью простых уголковых горелок, обеспечивающих эффективное выгорание при больших избытках воздуха и малых потерях давления.

Читайте также:  Владыкин влад цикл потерянный

Использование в паровой части ПГУ сверхкритического давления вполне возможно и не вызовет изменения профиля и конструкции котлов-утилизаторов. Повышение давления пара позволяет на 2-2,5% снизить удельный расход топлива, что меньше, чем в паротурбинных блоках (пропорционально относительной мощности паровой части). Оно вызывает увеличение металлоемкости и стоимости оборудования и исключает использование ПГУ в качестве полупиковой мощности.

Аналогичные технико-экономические показатели могут быть получены в ПГУ с тремя ГТЭ-150 и паровой турбиной мощностью около 700 МВт. Такая ПГУ, однако, хуже компонуется в главном корпусе (при двух ГТУ их располагают симметрично относительно паровой турбины); она более сложна и трудна для управления и автоматизации.

Парогазовые установки с двумя ГТЭ-150 и паровой турбиной мощностью 800 МВт менее экономичны; удельный расход теплоты в них на 3-4% выше. Это является следствием меньшей степени бинарности и доли газотурбинной мощности, которые влияют на к. п. д. даже больше, чем параметры пара: парогазовые установки с тремя ГТУ при докри-тическом давлении на 1,5% экономичнее, чем с двумя при сверхкритическом. При относительно меньшем расходе газов в ПГУ с двумя ГТЭ-150 и турбиной К-800 для подогрева питательной воды будут нужны (хотя и с меньшими расходами) все регенеративные отборы пара, усложняющие схему и эксплуатацию ПГУ. Для получения требуемого количества пара (около 950 т/ч на один котел) температура газов на входе в котлы должна быть на уровне 1150 °С. Это потребует устройства в котле неэффективно работающей топочной камеры с традиционными горелками, увеличения массы и габаритов котла. Другие возможные решения, например пропуск половины расхода газов мимо топки в конвективную шахту, сильно усложняют конструкцию котла.

В значительной степени традиционные для паротурбинных блоков схемные и конструктивные решения сохраняются в ПГУ с полным использованием кислорода в отработавших газах ГТУ. Такие ПГУ с ГТЭ-150 можно создать с использованием паровых турбин К-500 и К-800.

Вследствие низкой бинарности и малой доли газотурбинной мощности удельный расход теплоты в ПГУ со сбросом газов в котел обычного типа существенно выше (на 5-8%), чем в оптимальных ПГУ утилизационного типа. Пониженная экономичность при использовании турбины К-800 объясняется тем, что содержащегося в газах ГТУ кислорода недостаточно для сжигания топлива, которое требуется для выработки обеспечивающего эту турбину расхода пара, и в топку котла, кроме газов из ГТУ, приходится подавать значительное количество воздуха.

Различия в удельном расходе топлива для ПГУ с разной степенью бинарности соответствуют низкой температуре уходящих газов (110 °С), для достижения которой требуется развитие экономайзерных поверхностей котлов-утилизаторов. При повышении температуры уходящих газов экономичность ПГУ снижается тем быстрее, чем выше степень бинарности, коэффициент избытка воздуха и, следовательно, доля потерь с уходящими газами. Несмотря на это, при температурах газов в ГТУ выше 1000 °С выгоды цикла с высокой бинарностыо сохраняются до tух< 180- : – 200 °С.

Парогазовые установки мощностью 350 и 800 МВт с одной или двумя ГТЭ-150 лучше приспособлены для покрытия полупиковых нагрузок. При умеренной удельной стоимости эти ПГУ должны обладать высокой экономичностью и надежно работать в циклическом режиме с ежедневными пусками и остановами.

На ТЭЦ, сооружение которых намечено на природном газе, целесообразно устанавливать парогазовые установки мощностью 200-350 МВт. Помимо экономической эффективности, важнейшими требованиями к этим ПГУ являются высокая надежность, возможность автономной работы паровой части и экономичного отпуска теплоты потребителям при остановах ГТУ, а для европейских районов – возможность глубокой разгрузки для участия в покрытии переменной части графика электрических нагрузок.

Источник

Бинарные парогазовые установки

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования «Новосибирский государственный технический университет»

РЕФЕРАТ

на тему «Бинарные парогазовые установки»

по дисциплине «Введение в направление»

Проверил: Выполнил:

проф. Щинников П.А. студент Курьянов А.А.

группа ТЭ-51

Отметка о защите

Новосибирск, 2009

Введение

В данной работе, представлены термодинамический цикл и схема бинарной парогазовой установки. Дано описание ее работы.


Описание установки

На современном этапе ПГУ разрабатываются и создаются 3Х типов[1]:

Вкратце рассмотрим бинарные парогазовые установки, но перед тем, как раскрыть тему бинарных парогазовых установок (ПГУ), необходимо объяснить физические процессы и дать определения составляющим частям данной установки.

Описание цикла

Основные процессы протекающие в установке:

1 – процесс сжатия в компрессоре;

3 – расширение газа в турбине;

4 – линия условного замыкания цикла, на самом деле газы сбрасываются

в котел утилизатор и забирается воздух из атмосферы[7];

TПВ – нагрев воды в котле до температуры кипения;

P0 – испарение воды в котле;

T0 – перегрев пара;

T0 – TК – расширение пара в турбине;

PK – конденсация пара в конденсаторе.

Рис. 2 [5] Цикл парогазовой установки в координатах T – S.

Описание установки

Рис. 1 [1] Принципиальная тепловая схема бинарной парогазовой установки:

ГТУ – газотурбинная установка; ПТУ – паротурбинная установка.

Используя обозначения на рис.1 можно кратко описать работу ПГУ. Установка состоит из двух ступеней: верхней является газотурбинная установка или ГТУ (верхний прямоугольник), нижней паротурбинная установка или ПТУ (нижний прямоугольник).

Воздух сжимается в компрессоре 2 и поступает в камеру сгорания 1, в которую подается топливо, и при его сгорании образуются высокотемпературные газы. Степень повышения давления, т.е. отношение давлений воздуха на входе и выходе в современных установках достигает 15 раз. Температура на выходе из камеры сгорания составляет 1000-1200 °С.

Далее в блоке турбина-генератор (4-5) происходит выработка электрической энергии.

Отработавшие в ступени ГТУ газы на выходе по-прежнему обладают высокой температурой (500-600 °С). Нецелесообразно сбрасывать газы в атмосферу. Для использования их тепла используют котел-утилизатор. Т.е. нижняя ступень или паротурбинная установка (ПТУ) включает в себя: котел-утилизатор 7 и паровую турбину 8. Рабочим телом ПТУ является вода и её пар. Рассмотрим работу этой установки: отработавшие в ступени ГТУ высокотемпературные газы попадают в паровой котел-утилизатор, в котором производится пар для паровой турбины. Отработавший в турбине пар сбрасывается в конденсатор 9. Далее насосом 10 снова на котел. Цикл повторяется. В данном примере рассмотрен котел утилизатор, выполненный с контуром естественной циркуляции. И состоит из:

Читайте также:  В каком цикле проверять грудь

а – экономайзер;

б – барабан;

в – испаритель;

г – перегреватель.

Парогазовая установка с котлом-утилизатором – наиболее перспективная и широко распространенная в энергетике парогазовая установка, отличающаяся простотой и высокой эффективностью производства электрической энергии. Эти ПГУ – единственные в мире энергетические установки, которые при работе в конденсационном режиме отпускают потребителям электроэнергию с КПД 55-60%.

Эксплуатационные издержки мощной современной ПГУ вдвое ниже по сравнению с издержками на пылеугольной ТЭС. Сроки строительства ПГУ, в особенности при поэтапном вводе в эксплуатацию, намного короче, чем сроки строительства мощных тепловых электростанций других типов.

Одной из главных причин перспективности ПГУ является использование природного газа – топлива, мировые запасы которого очень велики. Газ – это лучшее топливо для энергетических ГТУ – основного элемента установки. Природный газ хорошо транспортируется на дальние расстояния по магистральным газопроводам. Его можно поставлять и в жидком виде, как сжиженный природный газ. Таким топливом, например, пользуются для ПГУ в Японии и Южной Корее.

Парогазовые установки могут также работать при использовании в ГТУ тяжелого нефтяного топлива, сырой нефти, побочных продуктов переработки нефти, синтетического газа, получаемого при газификации углей[2].

Заключение

Лучшие показатели экономичности среди всех типов ПГУ имеют установки с котлом-утилизатором. При работе на природном газе м номинальной нагрузкой они обеспечивают производство электроэнергии с КПД нетто до 60%. Вместе с тем для их работы необходимо бесперебойное круглогодичное снабжение природным газом высокого давления (более 4 МПа).

В данной работе вкратце описана схема работы бинарной ПГУ. Дана характеристика цикла работы установки.


Список литературы

1. Ноздренко Г.В. Конспект лекций. НГТУ. 2008.

2. Цанев С.В., Буров В.Д., Ремезов А.Н. Газотурбинные и парогазовые

установки тепловых электростанций. М.: Издательство МЭИ,

2002. – 584 с., ил.

3. Уваров В.В. Газовые турбины и газотурбинные установки. М.:

«Высшая школа», 1970. – 320 с., ил.

4. Шварц В.А. Конструкции газотурбинных установок. М.:

«Машиностроение», 1970. – 436 с., ил.

5. Ноздренко Г.В., Щинников П.А., Гептина Т.А. Расчет структурной схемы

Издательство НГТУ, 1997. – 17 с.

6. Трухний А.Д., Петрунин С.В. Расчет тепловых схем парогазовых установок

утилизационного типа: Методическое пособие. М.:

Издательство МЭИ, 2001. – 24 с.

7. Костюк А.Г., Фролов В.В., Булкин А.Е., Трухний А.Д. Турбины тепловых и

атомных электрических станций. М.: Издательство МЭИ,

2001. – 488 с., ил.

Источник

Парогазовый цикл – это бинарный цикл, в котором первым рабочим телом в области высоких температур являются продукты сгорания топлива, а вторым в области низких температур – водяной пар.

Парогазовые установки (ПГУ) – это последовательно соединенные газовая и паровая тепловые установки.

Температура газов на входе в паровую турбину газотурбинной установки (ГТУ) составляет 900…1000оС, а на выходе – более 350оС.

Температура перегретого водяного пара на входе в паровую турбину паросиловой установки (ПСУ) достигает 600…650 оС, а температура влажного насыщенного пара в конденсаторе ПСУ – лишь 25…30 оС.

Организация бинарного цикла с этими рабочими телами позволяет получить температурный перепад от 900…1000 оС до 25…30оС, и за счет этого значительно повысить термический КПД всей установки до значений 0,40…0,45.

Идеальный паровой цикл представлен на рис.1.43. Парогазовые установки бинарных циклов

Рис.1.43 Идеальный цикл парогазовой установки:

_ _ _ _ – газовый цикл;

– пароводяной цикл.

Газовый цикл:

1г-2г – адиабатное расширение газа;

2г-3г – изобарный отвод теплоты от газа;

3г-4г – адиабатное сжатие газа;

4г-1г – изотермический подвод теплоты к газу.

Пароводяной цикл:

1-2 – адиабатное расширение пара;

2-3 – изотермический отвод теплоты от пара;

3-4 – адиабатное сжатие воды;

4-1 – изобарный подвод теплоты к пару.

Передача теплоты от газа в изобарном Р2Г=constпроцессе 2г-3г к пароводяному рабочему телу, совершающему изобарный Р1=constпроцесс 4-1, происходит в теплообменном аппарате.

Изотермический подвод теплоты к газу 4г-1г практически можно осуществить лишь приближенно, за счет многоступенчатого подвода теплоты при расширении газа.

Изотермический отвод теплоты 2-3 в пароводяном цикле можно осуществить в конденсаторе водяного пара при Р2=const.

Газовый цикл в парогазовом цикле является открытым, поскольку продукты сгорания топлива (первое рабочее тело) выбрасываются в окружающую среду после теплообмена с водяным рабочим телом.

Пароводяной цикл – закрытый, поэтому в нем могут использоваться не только вода, но и другие вещества, например, углекислый газ (СО2).

Так как реализация изотермического подвода теплоты в паровом цикле сопряжена с серьезными техническими проблемами, то используется изобарный Р1Г=constподвод теплоты, входящий в цикл газотурбинной установки. В идеальном цикле ПГУ с газовым циклом ГТУ на рис.1.44 подвод теплоты происходит в изобарном процессе расширения газа 4г-1г. Коэффициент заполнения такого цикла приближается к единице.

Парогазовые установки бинарных циклов

Рис.1.44 Идеальный цикл парогазовой установки с газовым циклом, совершаемым газотурбинной установкой:

_ _ _ _ – цикл ГТУ (газовый цикл);

– пароводяной цикл.

Комбинированные турбинные установки на органическом топливе делятся на 2 типа:

  1. Парогазовые установки (ПГУ);

  2. Газопаровые установки (ГПУ).

В ПГУ основная доля теплоты подводится с топливом в паротурбинную часть, а в ГПУ – в камеру сгорания газотурбинной установки.

По взаимодействию рабочих тел ПГУ и ГПУ делятся на 2 группы:

  1. С разделенными контурами, в которых пароводяное рабочее тело и продукты сгорания топлива движутся по самостоятельным трактам в газовую и паровую части установок и передают теплоту в теплообменных аппаратах поверхностного типа, то есть без смешивания;

  2. Контактного типа, когда пароводяное рабочее тело и продукты сгорания топлива смешиваются перед поступлением в газопаровую турбину.

Читайте также:  Действительные циклы одноступенчатых холодильных машин

В дальнейшем рассматриваются только парогазовые установки с разделенными контурами (потоками), которые в свою очередь подразделяются по схемам на:

а) параллельные с высоконапорными парогенераторами (ВПГ);

б) последовательные с низконапорными парогенераторами (НПГ), называемые также ПГУ со сбросом теплоты, или ПГУ сбросного типа.

В ПГУ с НПГ продукты сгорания топлива в газотурбинной установке поступают либо в топку котла для дожигания и газоводяной подогреватель питательной воды (экономайзер), либо сразу в подогреватель питательной воды, называемый газовым подогревателем. Схема ПГУ в НПГ и газовым подогревателем представлена на рис.1.45.

Парогазовые установки бинарных циклов

Рис.1.45 принципиальная схема парогазовой установки со сбросом теплоты и газовым подогревателем питательной воды:

ТН – топливный насос;

КС – камера сгорания;

ВК – воздушный компрессор;

ТБ – топливный бак;

ГТ – газовая турбина;

ЭГ – электрогенератор;

КА – котлоагрегат;

ПП – пароперегреватель;

ПК – паровой котел;

ГП – газовый подогреватель;

ПН – питательный насос;

ПТ – паровая турбина;

К – конденсатор;

ЦН – циркуляционный насос.

Воздух сжимается компрессором ВК и подается в камеру сгорания, где образует с топливом смесь, сгорающую при постоянном давлении (Р1Г=const) в камере сгорания КС. Продукты сгорания топлива поступают в газовую турбину ГТ, где расширяются, совершая работуПарогазовые установки бинарных циклов, передаваемую электрогенератору ЭГ.

Газы, отработавшие в газовой турбине ГТ, подаются в газовый подогреватель ГП для подогрева питательной воды паросиловой установки, а затем удаляются в атмосферу.

Большое количество утилизируемой теплоты продуктов сгорания топлива в этом случае позволяет полностью отключить регенеративные подогреватели питательной воды ПСУ, что приводит к увеличению термического КПД и мощности установки. Экономия топлива за счет утилизации теплоты отходящих газов газотурбинной установки достигает 15%. Эффективность ПГУ выше, чем у ПСУ и ГТУ по отдельности.

В парогазовой установке с параллельной схемой и высоконапорным парогенератором (ВПГ) камера сгорания и парогенератор обычно совмещены. Топливная смесь сгорает в камере сгорания при высоком давлении, при этом часть теплоты сгорания сразу идет на парообразование и перегрев пара, после чего продукты сгорания с пониженной температурой поступают на вход газовой турбины. Температурный напор при теплопередаче в ВПГ значительно выше, чем в НПГ, что объясняет название парогенераторов «высоконапорный» и «низконапорный». НА рис.1.46 представлена схема ПГУ с ВНП и газоводяным подогревателем питательной воды.

Парогазовые установки бинарных циклов

Рис.1.46 Схема парогазовой установки с высоконапорным парогенератором и газоводяным подогревателем:

ВК – воздушный компрессор;

ВПГ – высоконапорный парогенератор;

ПП – пароперегреватель;

ГТ – газовая турбина;

ЭГ – электрогенератор;

ПГВ – газоводяной подогреватель;

ПН – питательный насос;

К – конденсатор;

ПТ – паровая турбина;

ЦН – циркуляционный насос.

Газоводяной подогреватель питательной воды (экономайзер) ПГВ позволяет увеличить термический КПД за счет частичного отказа от регенеративных подогревателей.

Воздух (окислитель) сжигается в компрессоре ВК и подается в высоконапорный парогенератор ВПГ, где смешивается с жидким или газообразным топливом. Продукты сгорания этой смеси (топливной смеси), отдав часть теплоты водяному пару в самом ВПГ, направляются в газовую турбину ГТ, с которой соединен электрогенератор ЭГ. Отработав в ГТ, продукты сгорания с пониженной энтальпией и давлением направляются в газовый подогреватель ПГВ, где подогревают питательную воду, подаваемую в парогенератор ВПГ. Отдав теплоту питательной воде, в ПГВ, продукты сгорания выбрасываются в атмосферу. В схеме ПГУ с ВПГ отсутствует паровой котел, функции которого выполняет испарительная поверхность в ВПГ.

Парогазовые установки бинарных циклов

Рис.1.47 Цикл парогазовой установки с высоконапорным парогенератором и газоводяным подогревателем

Процессы в газовом цикле:

4г-1г’ – изобарное расширение при Р1Г=constпродуктов сгорания топливной смеси с подводом теплоты сгорания (теплоты химических реакций горения), изображаемой площадью а-4г-1г’-е-а и выделяемой в камере сгорания ВПГ;

1г’-1г – изобарная передача теплоты при Р1Г=constот продуктов сгорания к пароводяному рабочему телу через испарительные поверхности и пароперегреватель ПП высоконапорного парогенератор с понижением температуры от Т’Г1до ТГ1 (площадь с-1г-1г’-е-с);

1г-2г – адиабатное расширение продуктов сгорания с начальной температурой ТГ1и давлением Р1Гдо давления Р2Ги температуры ТГ2в газовой турбине ГТ;

2г-3г – изобарная передача теплоты при Р2Г=constот продуктов сгорания, отработавших в газовой турбине, к питательной воде в газоводяном подогревателе ПГВ (площадь а-3г-2г-с-а). В точке 3г продукты сгорания, охладившиеся в ПГВ до температуры ТГ3, выбрасываются в атмосферу;

3г-4г – адиабатное сжатие свежей порции воздуха в воздушном компрессоре ВК от давления Р2Гдо Р1Гс повышением температуры топливной смеси до ТГ4;

Процессы в пароводяном цикле:

4-Р – регенеративный подогрев питательной воды в газоводяном подогревателе ПГВ при Р1=constтеплотой газового процесса 2г-3г;

Р-5 – подогрев в ВПГ питательной воды из ПГВ до температуры кипения при Р1=const;

5-6 – парообразование в ВПГ за счет части теплоты газового процесса 1г’-1г;

6-1 – перегрев пара в пароперегревателе ПП за счет части теплоты газового процесса 1г’-1г;

1-2 – адиабатное расширение пара в паровой турбине ПТ от Р1до Р2с повышением температуры от Т1до Т2;

2-3 – конденсация водяного пара в конденсаторе К при Р2=constи Т2=const;

3-4 – адиабатное сжатие воды от Р2до Р1в питательном насосе ПН с повышением температуры от Т3до Т4.

Полезная работа пароводяного цикла

Парогазовые установки бинарных циклов

(1.64)

Полезная работа газового цикла:

Парогазовые установки бинарных циклов

(1.65)

Полезная работа обоих циклов:

(1.66)

И

ли

(1.67)

П

Парогазовые установки бинарных циклов

одведенная теплота к обоим рабочим телам в теоретическом цикле парогазовой установки с ВПГ

Термический КПД парогазовой установки с ВПГ

(1.68)

Парогазовые установки бинарных циклов

Парогазовые установки с высоконапорными парогенераторами более эффективны, чем ПГУ с НПГ.

Источник