Обратный цикл карно кпд

В термодинамике цикл Карно́ или процесс Карно́ – это идеальный[1]круговой процесс, состоящий из двух адиабатных и двух изотермических процессов[2]. В процессе Карно термодинамическая система выполняет механическую работу за счёт обмена теплотой с двумя тепловыми резервуарами, имеющими постоянные, но различающиеся температуры. Резервуар с более высокой температурой называется нагревателем, а с более низкой температурой – холодильником[3].

Цикл Карно назван в честь французского учёного и инженера Сади Карно, который впервые его описал в своём сочинении «О движущей силе огня и о машинах, способных развивать эту силу» в 1824 году[4][5].

Поскольку идеальные процессы могут осуществляться лишь с бесконечно малой скоростью, мощность тепловой машины в цикле Карно равна нулю. Мощность реальных тепловых машин не может быть равна нулю, поэтому реальные процессы могут приближаться к идеальному процессу Карно только с большей или меньшей степенью точности.

Коэффициент полезного действия (КПД) любой тепловой машины не может превосходить КПД идеальной тепловой машины, работающей по циклу Карно с теми же самыми температурами нагревателя и холодильника[6]. По этой причине, позволяя оценить верхний предел КПД тепловой машины, цикл Карно важен для теории тепловых машин. В то же время КПД цикла Карно настолько чувствителен к отклонениям от идеальности (потерям на трение), что данный цикл никогда не применяли в реальных тепловых машинах[K 1][8].

Описание цикла Карно[править | править код]

Рис. 1. Цикл Карно в координатах T-S

Рис. 2. Цикл Карно в координатах p-V

Рис. 3. Цикл Карно на термодинамической поверхности идеального газа

Пусть тепловая машина состоит из нагревателя с температурой , холодильника с температурой и рабочего тела.

Цикл Карно состоит из четырёх обратимых стадий, две из которых осуществляются при постоянной температуре (изотермически), а две – при постоянной энтропии (адиабатически). Поэтому цикл Карно удобно представить в координатах (температура) и (энтропия).

1. Изотермическое расширение (на рис. 1 – процесс A→B). В начале процесса рабочее тело имеет температуру , то есть температуру нагревателя. При расширении рабочего тела его температура не падает за счет передачи от нагревателя количества теплоты , то есть расширение происходит изотермически (при постоянной температуре) . При этом объём рабочего тела увеличивается, оно совершает механическую работу, а его энтропия возрастает.

2. Адиабатическое расширение (на рис. 1 – процесс B→C). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом температура тела уменьшается до температуры холодильника , тело совершает механическую работу, а энтропия остаётся постоянной.

3. Изотермическое сжатие (на рис. 1 – процесс C→D). Рабочее тело, имеющее температуру , приводится в контакт с холодильником и начинает изотермически сжиматься под действием внешней силы, отдавая холодильнику количество теплоты . Над телом совершается работа, его энтропия уменьшается.

4. Адиабатическое сжатие (на рис. 1 – процесс D→A). Рабочее тело отсоединяется от холодильника и сжимается под действием внешней силы без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя, над телом совершается работа, его энтропия остаётся постоянной.

Обратный цикл Карно[править | править код]

В термодинамике холодильных установок и тепловых насосов рассматривают обратный цикл Карно, состоящий из следующих стадий[9][10]: адиабатического сжатия за счёт совершения работы (на рис. 1 – процесс C→B); изотермического сжатия с передачей теплоты более нагретому тепловому резервуару (на рис. 1 – процесс B→A); адиабатического расширения (на рис. 1 – процесс A→D); изотермического расширения с отводом теплоты от более холодного теплового резервуара (на рис. 1 – процесс D→C).

КПД тепловой машины Карно[править | править код]

Количество теплоты, полученное рабочим телом от нагревателя при изотермическом расширении, равно

Аналогично, при изотермическом сжатии рабочее тело отдаёт холодильнику

Отсюда коэффициент полезного действия тепловой машины Карно равен

Первая и вторая теоремы Карно[править | править код]

Из последнего выражения следует, что КПД тепловой машины, работающей по циклу Карно, зависит только от температур нагревателя и холодильника, но не зависит ни от устройства машины, ни от вида или свойств её рабочего тела. Этот результат составляет содержание первой теоремы Карно[11]. Кроме того, из него следует, что КПД может составлять 100 % только в том случае, если температура холодильника равна абсолютному нулю. Это невозможно, но не из-за недостижимости абсолютного нуля (этот вопрос решается только третьим началом термодинамики, учитывать которое здесь нет необходимости), а из-за того, что такой цикл или нельзя замкнуть, или он вырождается в совокупность двух совпадающих адиабат и изотерм.

Поэтому максимальный КПД любой тепловой машины не может превосходить КПД тепловой машины Карно, работающей при тех же температурах нагревателя и холодильника. Это утверждение называется второй теоремой Карно[12][13]. Оно даёт верхний предел КПД любой тепловой машины и позволяет оценить отклонение реального КПД от максимального, то есть потери энергии вследствие неидеальности тепловых процессов.

Связь между обратимостью цикла и КПД[править | править код]

Для того чтобы цикл был обратимым, в нём должна быть исключена передача теплоты при наличии разности температур, иначе нарушается условие адиабатичности процесса. Поэтому передача теплоты должна осуществляться либо в изотермическом процессе (как в цикле Карно), либо в эквидистантном процессе (обобщённый цикл Карно или, для примера, его частный случай Цикл Брайтона). Для того чтобы менять температуру рабочего тела от температуры нагревателя до температуры холодильника и обратно, необходимо использовать либо адиабатические процессы (они идут без теплообмена и, значит, не влияют на энтропию), либо циклы с регенерацией тепла при которых нет передачи тепла при разности температур. Мы приходим к выводу, что любой обратимый цикл может быть сведён к циклу Карно.

Примером обратимого цикла, не являющегося циклом Карно, но интегрально совпадающим с ним, является идеальный цикл Стирлинга: в двигателе Стирлинга добавлен регенератор, обеспечивающий полное приближение цикла к циклу Карно с достижением обратимости и тех же величин КПД[14]. Возможны и другие идеальные циклы, в которых коэффициент полезного действия определяется по той же формуле, что и для циклов Карно и Стирлинга, например цикл Эрикссона (англ.)русск., состоящий из двух изобар и двух изотерм[14].

Читайте также:  Как писать циклы в sql

Если же в цикле возникает передача теплоты при наличии разности температур, а таковыми являются все технические реализации термодинамических циклов, то цикл утрачивает свойство обратимости. Иначе говоря, посредством отведённой в цикле механической работы становится невозможным получить исходную теплоту. КПД такого цикла будет всегда меньше, чем КПД цикла Карно.

См. также[править | править код]

  • Термодинамические циклы
  • Первое начало термодинамики
  • Второе начало термодинамики
  • Термодинамическая энтропия
  • Термодинамические потенциалы

Комментарии[править | править код]

  1. ↑ В реальных тепловых машинах цикл Карно не используют, поскольку практически невозможно осуществить процессы изотермического сжатия и расширения. Кроме того, полезная работа цикла, представляющая собой алгебраическую сумму работ во всех четырех составляющих цикл частных процессах, даже в идеальном случае полного отсутствия потерь мала по сравнению с работой в каждом из частных процессов, то есть мы имеем дело с обычной ситуацией, когда итоговый результат представляет собой малую разность больших величин. Применительно к математическим вычислениям это означает высокую отзывчивость результата даже на небольшие вариации значений исходных величин, а в рассматриваемом нами случае соответствует высокой чувствительности полезной работы цикла Карно и его КПД к отклонениям от идеальности (потерям на трение). Эта связь с отклонениями от идеальности настолько велика, что с учетом всех потерь полезная работа цикла Карно приближается к нулю[7].

Примечания[править | править код]

  1. ↑ То есть без потерь, в первую очередь на трение.
  2. ↑ Карно цикл // Италия – Кваркуш. – М. : Советская энциклопедия, 1973. – (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров ; 1969-1978, т. 11).
  3. ↑ Сивухин, Т. II. Термодинамика и молекулярная физика, 2005, с. 94.
  4. ↑ Carnot S. Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance. – Paris: Gauthier-Villars, Imprimeur-Libraire, 1878. – 102 p. (фр.)
  5. ↑ Второе начало термодинамики. (Работы Сади Карно – В. Томсон – Кельвин – Р. Клаузиус – Л. Больцман – М. Смолуховский) / Под. ред. А. К. Тимирязева. – Москва-Ленинград: Государственное технико-теоретическое издательство, 1934. – С. 17-61.
  6. ↑ Сивухин, Т. II. Термодинамика и молекулярная физика, 2005, с. 113-114.
  7. ↑ Бэр Г. Д., Техническая термодинамика, 1977, с. 112.
  8. ↑ Кинан Дж., Термодинамика, 1963, с. 93.
  9. ↑ Николаев Г. П., Лойко А. Э., Техническая термодинамика, 2013, с. 172.
  10. ↑ Бахшиева Л. Т. и др., Техническая термодинамика и теплотехника, 2008, с. 148.
  11. ↑ Сивухин, Т. II. Термодинамика и молекулярная физика, 2005, с. 95.
  12. ↑ Сивухин, Т. II. Термодинамика и молекулярная физика, 2005, с. 113.
  13. ↑ Румер Ю. Б., Рывкин М. Ш., Термодинамика, статистическая физика и кинетика, 2000, с. 35.
  14. ↑ 1 2 Крестовников А. Н., Вигдорович В. Н., Химическая термодинамика, 1973, с. 63.

Литература[править | править код]

  • Carnot S. Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance. – Paris: Gauthier-Villars, Imprimeur-Libraire, 1878. – 102 p. (фр.)
  • Бахшиева Л. Т., Кондауров Б. П., Захарова А. А., Салтыкова В. С. Техническая термодинамика и теплотехника / Под ред. проф А. А. Захаровой. – 2-е изд., испр. – М.: Академия, 2008. – 272 с. – (Высшее профессиональное образование). – ISBN 978-5-7695-4999-1.
  • Бэр Г. Д. Техническая термодинамика. – М.: Мир, 1977. – 519 с. (недоступная ссылка)
  • Кинан Дж. Термодинамика / Пер с англ. А. Ф. Котина под ред. М. П. Вукаловича. – М.-Л.: Госэнергоиздат, 1963. – 280 с.
  • Ландау Л. Д., Лифшиц Е. М. Статистическая физика. Часть 1. – Издание 3-е, доп. – М.: Наука, 1976. – 584 с. – («Теоретическая физика», том V).
  • Крестовников А. Н., Вигдорович В. Н. Химическая термодинамика. – 2-е изд., испр. и доп. – М.: Металлургия, 1973. – 256 с.
  • Николаев Г. П., Лойко А. Э. Техническая термодинамика. – Екатеринбург: УрФУ, 2013. – 227 с.
  • Румер Ю. Б., Рывкин М. Ш. Термодинамика, статистическая физика и кинетика. – 2-е изд., испр. и доп. – Новосибирск: Изд-во Носиб. ун-та, 2000. – 608 с. – ISBN 5-7615-0383-2.
  • Савельев И. В. Курс общей физики:Молекулярная физика и термодинамика. – М.: Астрель, 2001. – Т. 3. – 208 с. – 7000 экз. – ISBN 5-17-004585-9.
  • Сивухин Д. В. Общий курс физики. – Т. II. Термодинамика и молекулярная физика. – 5 изд., испр.. – М.: ФИЗМАТЛИТ, 2005. – 544 с. – ISBN 5-9221-0601-5.

Источник

Протекаетв обратном направленииследующим образом (рис. 1.10). Рабочее тело с начальными параметрами точки «а» расширяется адиабатно по «ab», совершая работу за счет внутренней энергии и охлаждается от температуры до в точках. Затем расширение идет по изотерме (bc) и рабочее тело отбирает от холодного источника при температуре теплоту .

Далее рабочее тело сжимается по адиабате «cd» и его температура повышается от до , а затем сжимается по изотерме «da» (- const). При этом рабочее тело отдает горячему источнику с температурой количество теплоты . В результате получается, что работа сжатия будет больше работы расширения на величину площади «abcd», ограниченной контуром цикла. Эта работа превращается в теплоту и вместе с передается горячему источнику. При этом холодный источник отдает теплоту , а горячий получит

Рис. 1.10

Обратный цикл Карно называется идеальным циклом холодильных установок и так называемых тепловых насосов. При этом рабочим телом являются пары легкокипящих жидкостей – фенол, аммиак и т.п. Процесс перекачки теплоты от тел, помещенных в холодильную камеру, в окружающую среду происходит за счет затрат электроэнергии. Эффективность холодильной установки оценивается холодильным коэффициентом

Читайте также:  Экономический цикл характеризуется неустойчивостью

, (1.79)

где q2- отведенная от охлаждаемого объекта теплота;

lц- работа, затраченная на это.

Используя Ts-диаграмму для описания этого процесса, последней формуле можно придать следующий вид

, (1.80)

где Т1 – температура окружающей среды; Т2 – температура охлаждаемого тела.

При этом чем меньше разность температур между холодильной камерой и окружающей средой, тем меньше нужно затратить энергии для передачи теплоты от холодного тела к горячему и тем выше холодильный коэффициент εхол.

Анализ обратного цикла Карно показывает, что передача теплоты от тела менее нагретого телу более нагретому возможна, но этот процесс требует соответствующей энергетической компенсации в системе, в виде затраченной работы или теплоты более высокого потенциала, способного совершить работу при переходе на более низкий потенциал.

В основе действия теплового насоса также лежит обратный цикл Карно. В отличие от холодильной машины, тепловой насос должен отдавать как можно больше теплоты горячему телу (например, системе отопления).

Эффективность теплового насоса оценивается так называемым отопительным коэффициентом

, (1.81)

где q1 – теплота, переданная нагреваемому телу;

lц – величина работы, подведенной в данном цикле.

Аналогично выводу формулы (1.80) для eотоп можно получить следующую формулу:

, (1.82)

где Т1- температура нагреваемого тела;

Т2 – температура окружающей среды.

1.3.4. Второй закон термодинамики

При анализе термодинамических циклов тепловых двигателей следует обратить внимание на то, что эталонным является цикл Карно, построенный в том же интервале температур , в котором работает рассматриваемый цикл. Например, если известно, что термический КПД некоторого прямого цикла равен 0,1, то само по себе это значение еще ни о чем не говорит. Оно должно быть сопоставлено со значением термического КПД соответствующего цикла Карно, т.е. должен быть дополнительно задан интервал температур . Скажем, для диапазона температур 300…2000 К термический КПД цикла Карно = 0,85 и степень совершенства цикла с термическим КПД – 0,1 мала, а для диапазона 300…335 K = 0,104 – достаточно велика. Таким образом, для увеличения термического КПД прямого цикла необходимо стремиться к тому, чтобы средние интегральные температуры подвода и отвода теплоты в цикле были как можно ближе к своим аналогам для соответствующего цикла Карно. Никакими новыми конструкциями тепловых двигателей или применением новых рабочих тел нельзя добиться того, чтобы термический КПД цикла , стал больше . Аналогичные соображения справедливы и для циклов холодильных машин и соответственно обратного цикла Карно.

Обратный цикл карно кпд

Существует несколько формулировок второго закона термодинамики. Наиболее известна формулировка, предложенная Клаузиусом в виде принципа, согласно которому теплота не может сама собой переходить от более холодного тела к более нагретому. Этот принцип или какой-то другой, ему адекватный, может быть использован при рассмотрении ряда теоретических вопросов термодинамики (например, теоремы Карно). При этом необходимо иметь в виду, что второй закон термодинамики содержит два независимых друг от друга положения. Первое из них связано с вопросом существования энтропии, т.е. с утверждением, что в равновесных процессах элементарное количество теплоты может быть рассчитано по формуле , где s – некоторая функция состояния, называемая энтропией. Второе положение формулируется обычно как принцип возрастания энтропии в необратимых процессах (т.е. для них ).

В основе II закона лежит гипотеза С. Карно о том, что необходимым условием получения работы с помощью тепловых двигателей является наличие горячего и холодного источников теплоты.

Таким образом, устанавливается, что теплота, полученная рабочим телом от горячего источника, не может быть полностью превращена в механическую работу, часть ее должна быть отдана холодному источнику теплоты.

В тепловых двигателях горячим источником служат химические реакции сжигания топлива (или ядерные реакции), а холодным источником является окружающая среда (т.е. атмосфера).

Таким образом, II закон термодинамики можно сформулировать следующими словами: «двигатель, полностью превращающий в работу всю полученную от горячего источника теплоту, невозможен».

В аналитической форме второй закон термодинамики может быть представлен в виде соотношения

,

где знак “=” относится к обратимым процессам, а знак “>” – к необратимым.

Первый закон термодинамики представляет собой всеобщий закон природы. В отличие от него второй закон нельзя считать универсальным. Экстраполяция закономерностей, установленных в определенных условиях существования материи, на все области Вселенной не является правомерной, так как в некоторых из них эти условия могут быть совершенно иными, чем на Земле. Кроме того, необходимо дополнительно учитывать некоторые существенные физические факторы и прежде всего гравитацию. С учетом сил тяготения однородное изотермическое распределение не является наиболее вероятным состоянием Вселенной. В условиях нестатичной, расширяющейся Вселенной может происходить распад однородного вещества на отдельные объекты (например, галактики).

Источник

Для работы любой тепловой машины по замкнутому циклу необходима внешняя среда, которую условно можно представить себе как два тела – нагреватель, находящийся при температуре Тmах, и холодильник, находящийся при температуре Tmin(Tmin < Тmах). Предполагается, что при контакте с нашей системой температуры нагревателя и холодильника не меняются. При контакте с нагревателем система получает тепло, при контакте с холодильником – отдает его.

В термодинамике существует теорема Карно (рис. 5.2):

Рис. 5.2. Леонар Сади Карно (французский физик и военный инженер)

При заданных температурах нагревателя и холодильника максимально возможный КПД тепловой машины не зависит от природы рабочего тела машины и определяется формулой

(5.5)

Реализация максимально возможного КПД достигается в так называемом цикле Карно, когда идеальный газ проходит замкнутый цикл, составленный из двух адиабат и двух изотерм (рис. 5.3).

Обратный цикл карно кпд

Рис. 5.3. Цикл Карно (обходится по часовой стрелке) – комбинация двух изотерм 1-2, 3-4 и двух адиабат 2-3 и 4-1; теплообмен со средой осуществляется на изотермических участках цикла: на участке 1-2 газ получает теплоту Q1, а на участке 3-4 отдает теплоту Q2

Читайте также:  Основные три в программировании циклы

Убедимся, что показанный замкнутый процесс действительно имеет КПД, соответствующий формуле (5.5). Температура системы равна T1 в точках 1, 2 и T2 в точках 3, 4. Значения остальных термодинамических параметров (р, V) будут иметь в качестве индекса номер соответствующей точки на диаграмме. Нам надо вычислить количества полученной Q1, и отданной Q2теплоты, найти совершенную газом работу АЦ = Q1 – Q2 и определить КПД цикла. Сразу заметим, что на участках 2-3 и 4-1 система не обменивается теплом с внешней средой. Следовательно, теплоту Q1газ получает на участке 1-2, а теплоту Q2отдает на участке 3-4. Рассмотрим подробнее различные участки цикла.

См. анимацию «Цикл Карно»

Изотерма 1-2. На этом участке газ находится в контакте с нагревателем и происходит изотермическое расширение от объема V1 до объема V2. Температура Т1 не меняется, следовательно, не изменяется внутренняя энергия, а вся полученная теплота расходуется на совершение газом работы:

Величину работы газа при изотермическом процессе мы уже вычисляли ранее, так что с учетом формулы (2.13) находим

(5.6)

Адиабата 2-3. Здесь система отсоединяется от нагревателя и не обменивается теплом с внешней средой: Q23 = 0. Газ продолжает расширяться, но уже адиабатно. Работа совершается за счет внутренней энергии газа, и его температура падает до значения Т2. На этом участке цикла нам нужна информация, доставляемая уравнением адиабаты:

(5.7)

Изотерма 3-4. Система подключается к холодильнику, и газ начинает сжиматься. Внутренняя энергия остается неизменной, над газом совершается работа (А34 < 0), а выделяющееся

тепло

передается холодильнику. Имеем аналогично (5.6)

(5.8)

Адиабата 4-1. Система отключена от внешней среды и продолжает сжиматься изотермически, что приводит к повышению ее температуры до Т1. В конечном итоге система возвращается в первоначальное состояние. Поскольку точки 4 и 1 лежат на адиабате, получаем связь объемов и температур, аналогичную (5.7):

(5.9)

Из уравнений (5.7) и (5.9) находим отношения объемов

откуда следует, что

(5.10)

Поэтому отдаваемую холодильнику теплоту Q2(см. уравнение (5.8)) можно записать как

(5.11)

Используя выражение (5.6) для теплоты, полученной системой, находим совершенную в ходе цикла работу

(5.12)

Из проведенного анализа следует также, что максимальная температура в цикле равна Тmах = Т1, а минимальная – Тmin = Т2. Если разделить (5.12) на (5.6), то немедленно получим выражение (5.5) для КПД цикла Карно, из которого выпадают все параметры, кроме температур холодильника и нагревателя.

Пример 1. Котел тепловой станции работает при температуре около t1 = 550 °С. Отработанное тепло отводится к реке при температуре около t2 = 20 °С. Найдем максимально возможный КПД этой станции (рис. 5.4).

Обратный цикл карно кпд

Рис. 5.4. Схема работы тепловой машины Карно

Поскольку в формуле для КПД цикла Карно используются абсолютные температуры, надо перейти от шкалы Цельсия к шкале Кельвина: Т1 = 550 + 273 = 823 К, Т2 = 20 + 273 = 293 К. Теперь находим КПД тепловой станции:

Конечно, реальный КПД станции заметно ниже.

Если цикл Карно осуществить в обратном направлении, то есть против часовой стрелки на рис. 5.2, то для определения эффективности холодильной установки надо использовать формулы (5.3), (5.4) и выражения (5.6), (5.11). Получаем тогда

(5.13)

Печально, но чем ниже температура внешней среды Т1, тем меньше мы нуждаемся в холодильнике, и тем эффективнее он работает.

Обратный цикл карно кпд

Рис. 5.5. Схема работы холодильной установки

Приведем численный пример. Если кондиционер поддерживает в комнате температуру t2 = 20 °С, а температура наружного воздуха равна t1 = 30 °С, то для холодильного коэффициента имеем

а для КПД холодильника

Конечно, на самом деле температура тепловыделяющего элемента больше наружной температуры на 20-30 градусов, так что разность температур может достигать 30-40 градусов, что приводит к значениям

Напомним, что речь идет об идеальных установках, работающих по циклу Карно. Реальный типичный кондиционер потребляет мощность 750 Вт, перекачивая за час около 5 МДж тепловой энергии. Это значит, что за секунду кондиционер совершает работу А = 750 Дж и отнимает у воздуха в комнате теплоту

Отсюда находим

Мы видим, что реальный кондиционер гораздо менее эффективен, нежели идеальный холодильник Карно.

Пример 2. Пусть в домашнем холодильнике поддерживается температура t2 = -3 °С (Т2 = 270 К), а температура в кухне равна t1 = 27 °С (T1 = 300 К). Пусть далее мотор холодильника потребляет мощность N = 200 Вт. Предполагая, что холодильник работает по циклу Карно и что тепловыделяющий элемент имеет температуру окружающего воздуха, определим мощность потока тепловой энергии, перекачиваемой из камеры холодильника в кухню.

За время t мотор совершит работу

КПД холодильника равен

откуда находим количество теплоты, поступающее в кухню в единицу времени:

Обратите внимание, что холодильник работает как весьма эффективный обогреватель помещения. Надо только оплачивать потребляемую мотором мощность 200 Вт, а в кухню поступит в 10 раз большая энергия, 90 % которой перекачивается из камеры холодильника (90 % – КПД холодильника в этом примере). Любопытно, что если бы вместо холодильника был включен обогреватель той же мощности, то он нагревал бы помещение в 10 раз слабее.

Наши численные оценки можно рассматривать как пример теплового загрязнения окружающей среды, свойственного технической цивилизации.

Дополнительная информация

https://eqworld.ipmnet.ru/ru/library/physics/thermodynamics.htm – Я. де Бур Введение в молекулярную физику и термодинамику, Изд. ИЛ, 1962 г. – стр. 202-205, ч. 2, гл. 2, § 10: описан процесс ожижения газа Клода – Гейландта.

Источник