Изменение внутренней энергии газа за цикл равна

Изменение внутренней энергии газа за цикл равна thumbnail

Ранее мы достаточно плотно познакомились с процессами и методами работы с ними. Среди часто используемых способов работы с процессами выделяются два: уравнение Менделеева-Клапейрона (для описания состояния идеального газа) и первое начало термодинамики. Из нескольких друг за другом идущих разных процессов можно составить общий циклический процесс.

Круговой процесс (цикл)составной термодинамический процесс, в результате совершения которого рабочее тело (газ) возвращается в исходное состояние. Таким образом, начальное и конечное состояние газа (давление газа 

, объём газа  и температура газа ) одинаковы. Попробуем изобразить такой процесс в координатах  (рис. 1).

Примеры циклических процессов

Рис. 1. Примеры циклических процессов

Например, наш циклический процесс 1.1 состоит из двух изохор, двух изотерм, а процесс 1.2 — из двух изобар и двух изохор. Таким образом, исходя из текстовых условий любой задачи и знания общего вида изопроцессов (именно из них чаще всего составляется цикл), можно нарисовать рисунок.

Для энергетического описания процесса (или цикла) через первое начало термодинамики необходимо обдумать два вопроса:

  1. как изменяется внутренняя энергия газа ()
  2. чему равна работа газа ()
  • где

Для циклов есть небольшие фишки, которые удобно использовать для убыстрения задачи.

Так, изменение внутренней энергии газа зависит только от изменения температуры, а т.к. в цикле начальное и конечное состояние газа одинаково, то изменение внутренней энергии идеального газа за цикл равно 0 (

).

Графическая интерпретация работы

Рис. 2. Графическая интерпретация работы газа

Поиск работы для газа также можно несколько упростить. Попробуем в координатах 

нарисовать график изобарического процесса и найти работу газа (рис. 2). Пусть газ находится в состоянии (давление  и объём ), далее газ изобарически перевели в состояние 2 (давление  и объём ). Тогда по определению работы газа:

(1)

Геометрически (рис. 2), произведение давления на разность объёмов численно равна площади прямоугольника, ограниченного сверху прямой (процессом), а снизу осью. В целом, эту логику можно расширить на любые процессы, тогда работа газа численно равна площади под кривой в координатах

.

Также в рамках школьной физики присутствует условное деление циклов на прямые и обратные:

Прямой цикл круговой, в котором рабочее тело совершает положительную работу за счёт сообщённой ему теплоты.

Обратный цикл круговой, в котором рабочее тело совершает отрицательную работу.

Анализируя (1) вопрос о положительной и отрицательной работе, сводится к вопросу о соотношении между начальным и конечным объёмами, если:

Для графиков можно использовать следующую логику: в случае, если площадь под графиком расширения газа больше соответствующей площади для сжатия, значит цикл — прямой (рис. 3), если наоборот — обратный (рис. 4).

Прямой циклический процесс

Рис. 3. Прямой циклический процесс

Обратный циклический процесс

Рис. 4. Обратный циклический процесс

Таким образом, разница в прямом и обратном цикле может быть в очерёдности процессов. Так, прямой процесс, в нашем примере, — это 1-2-3-4-1, а обратный — 1-4-3-2-1.

Вывод: в задачах на циклические процессы нужно быть очень внимательным при прочтении, т.к. часть слов будет иметь глубокий физический смысл. Лучше всего процессы в таких задачах прорисовывать на графиках в координатах 

. Если график уже есть, то это к лучшему. Определяемся с конкретными изопроцессами, заданными в задаче, и используем это знание или через уравнение Менделеева-Клапейрона, или через первое начало термодинамики.

Источник

В программу школьного курса физики входит ряд вопросов, связанных с тепловыми двигателями. Школьник должен знать основные принципы работы теплового двигателя, понимать определение коэффициента полезного действия (КПД) циклического процесса, уметь находить эту величину в простейших случаях, знать, что такое цикл Карно и его КПД.

Тепловым двигателем (или тепловой машиной) называется процесс, в результате которого внутренняя энергия какого-то тела превращается в механическую работу. Тело, внутренняя энергия которого превращается двигателем в работу, называется нагревателем двигателя. Механическая работа в тепловых машинах совершается газом, который принято называть рабочим телом (или рабочим веществом) тепловой машины. При расширении рабочее тело и совершает полезную работу.

Для того чтобы сделать процесс работы двигателя циклическим, необходимо еще одно тело, температура которого меньше температуры нагревателя и которое называется холодильником двигателя. Действительно, если при расширении газ совершает положительную (полезную) работу (левый рисунок; работа газа численно равна площади «залитой» фигуры), то при сжатии газа он совершает отрицательную («вредную») работу, которая должна быть по абсолютной величине меньше полезной работы. А для этого сжатие газа необходимо проводить при меньших температурах, чем расширение, и, следовательно, газ перед сжатием необходимо охладить. На среднем рисунком показан процесс сжатия газа 2-1, в котором газ совершает отрицательную работу , абсолютная величина которой показана на среднем рисунке более светлой «заливкой». Чтобы суммарная работа газа за цикл была положительна, площадь под графиком расширения должна быть больше площади под графиком сжатия. А для этого газ перед сжатием следует охладить. Кроме того, из проведенных рассуждений следует, что работа газа за цикл численно равна площади цикла на графике

Читайте также:  1с транзакция в цикле

Изменение внутренней энергии газа за цикл равна

зависимости давления от объема, причем со знаком «плюс», если цикл проходится по часовой стрелке, и «минус» — если против.

Таким образом, двигатель превращает в механическую работу не всю энергию, взятую у нагревателя, а только ее часть; остальная часть этой энергии используется не для совершения работы, а передается холодильнику, т.е. фактически теряется для совершения работы. Поэтому величиной, характеризующей эффективность работы двигателя, является отношение

Изменение внутренней энергии газа за цикл равна

(15.1)

где — работа, совершаемая газом в течение цикла, — количество теплоты, полученное газом от нагревателя за цикл. Отношение (15.1) показывает, какую часть количества теплоты, полученного у нагревателя, двигатель превращает в работу и называется коэффициентом полезного действия (КПД) двигателя.

Если в течение цикла рабочее тело двигателя отдает холодильнику количество теплоты (эта величина по своему смыслу положительна), то для работы газа справедливо соотношение . Поэтому существует ряд других форм записи формулы (15.1) для КПД двигателя

Изменение внутренней энергии газа за цикл равна

(15.2)

Французский физик и инженер С. Карно доказал, что максимальным КПД среди всех процессов, использующих некоторое тело с температурой в качестве нагревателя, и некоторое другое тело с температурой ( ) в качестве холодильника, обладает процесс, состоящий из двух изотерм (при температурах нагревателя и холодильника ) и двух адиабат (см. рисунок).

Изменение внутренней энергии газа за цикл равна

Изотермам на графике отвечают участки графика 1-2 (при температуре нагревателя ) и 3-4 (при температуре холодильника ), адиабатам — участки графика 2-3 и 4-1. Этот процесс называется циклом Карно. КПД цикла Карно равен

Изменение внутренней энергии газа за цикл равна

(15.3)

Теперь рассмотрим задачи. В задаче 15.1.1 необходимо использовать то обстоятельство, что работа газа в циклическом процессе численно равна площади цикла на графике зависимости давления от объема, причем со знаком «плюс», если цикл проходится по часовой стрелке, и «минус» — если против. Поэтому во втором цикле работа газа положительна, в третьем отрицательна. Первый цикл состоит из двух циклов, один из которых проходится по, второй — против часовой стрелки, причем, как следует из графика 1, площади этих циклов равны. Поэтому работа газа за цикл в процессе 1 равна нулю (правильный ответ — 2).

Поскольку в результате совершения циклического процесса газ возвращается в первоначальное состояние (задача 15.1.2), то изменение внутренней энергии газа в этом процессе равно нулю (ответ 2).

Применяя в задаче 15.1.3 первый закон термодинамики ко всему циклическому процессу и учитывая, что изменение внутренней энергии газа равно нулю (см. предыдущую задачу), заключаем, что (ответ 3).

Поскольку работа газа численно равна площади цикла на диаграмме «давление-объем», то работа газа в процессе в задаче 15.1.4 равна (ответ 1). Аналогично в задаче 15.1.5 газ за цикл совершает работу (ответ 1).

Работа газа в любом процессе равна сумме работ на отдельных участках процесса. Поскольку процесс 2-3 в задаче 15.1.6 — изохорический, то работа газа в этом процессе равна нулю. Поэтому (ответ 3).

По определению КПД показывает, какую часть количества теплоты, полученного у нагревателя, двигатель превращает в работу (задача 15.1.7 — ответ 4).

Работа двигателя за цикл равна разности количеств теплоты, полученного от нагревателя и отданного холодильнику : . Поэтому КПД цикла есть

Изменение внутренней энергии газа за цикл равна

(задача 15.1.8 — ответ 3).

По формуле (15.3) находим КПД цикла Карно в задаче 15.1.9

Изменение внутренней энергии газа за цикл равна

(ответ 2).

Пусть температура нагревателя первоначального цикла Карно равна , температура холодильника (задача 15.1.10). Тогда по формуле (15.3) для КПД первоначального цикла имеем

Изменение внутренней энергии газа за цикл равна

Отсюда находим . Поэтому для КПД нового цикла Карно получаем

Изменение внутренней энергии газа за цикл равна

(ответ 2).

В задаче 15.2.1 формулы (2), (3) и (4) представляют собой разные варианты записи определения КПД теплового двигателя (см. формулы (15.1) и (15.2)). Поэтому не определяет КПД двигателя только формула 1. (ответ 1).

Мощностью двигателя называется работа, совершенная двигателем в единицу времени. Поскольку работа двигателя равна разности полученного от нагревателя и отданного холодильнику количеств теплоты, имеем для мощности двигателя в задаче 15.2.2

Изменение внутренней энергии газа за цикл равна

(ответ 3).

По формуле (15.2) имеем для КПД двигателя в задаче 15.2.3

Изменение внутренней энергии газа за цикл равна

где — количество теплоты, полученное от нагревателя, — количество теплоты, отданное холодильнику (правильный ответ — 2).

Для нахождения КПД теплового двигателя в задаче 15.2.4 удобно использовать последнюю из формул (15.2). Имеем

Изменение внутренней энергии газа за цикл равна

где — работа газа, — количество теплоты, отданное холодильнику. Поэтому правильный ответ в задаче — 3.

Пусть газ совершает за цикл работу (задача 15.2.5). Поскольку количество теплоты, полученное от нагревателя равно ( — количество теплоты, отданное холодильнику), и работа составляет 20 % от этой величины, то для работы справедливо соотношение = 0,2 ( + 100). Отсюда находим = 25 Дж (ответ 1).

Читайте также:  Повести белкина что объединяет цикл

Поскольку работа теплового двигателя в задаче 15.2.6 равна 100 Дж при КПД двигателя 25 %, то двигатель получает от нагревателя количество теплоты 400 Дж. Поэтому он отдает холодильнику 300 Дж теплоты в течение цикла (ответ 4).

Изменение внутренней энергии газа за цикл равнаЦикл, данный в задаче 15.2.8, состоит из двух изотерм 2-3 и 4-1 и двух изохор 1-2 и 3-4. Работа газа в изохорических процессах равна нулю. Сравним работы газа в изотермических процессах. Для этого удобно построить график зависимости давления от объема в рассматриваемом процессе, поскольку работа газа есть площадь под этим графиком. График зависимости давления от объема для заданного в условии процесса приведен на рисунке. Поскольку изотерме 2-3 соответствует бóльшая температура, чем изотерме 4-1, то она будет расположена выше на графике . Объем газа в процессе 2-3 увеличивается, в процессе 4-1 уменьшается. Таким образом, график процесса на графике проходится по часовой стрелке, и, следовательно, работа газа за цикл положительна (ответ 1).

Изменение внутренней энергии газа за цикл равнаДля сравнения работ газа на различных участках процесса в задаче 15.2.9 построим график зависимости давления от объема. Этот график представлен на рисунке. Из рисунка следует, что работы газа в процессах 1-2 и 3-4 одинаковы по модулю (этим работам отвечают площади прямоугольников, «залитых» на рисунке светлой и темной «заливкой»). Работе газа на участке 4-1 отвечает площадь под графиком 4-1, которая меньше площади под графиком 1-2. Работе газа на участке 2-3 отвечает площадь под кривой 2-3 на рисунке, которая заведомо больше площади «залитых» прямоугольников. Поэтому в процессе 2-3 газ и совершает наибольшую по абсолютной величине (среди рассматриваемых процессов) работу (ответ 2.).

Согласно определению коэффициент полезного действия представляет отношение работы газа за цикл к количеству теплоты , полученному от нагревателя . Как следует из данного в условии задачи 15.2.10 графика, и в процессе 1-2-4-1 и в процессе 1-2-3-1 газ получает теплоту только на участке 1-2. Поэтому количество теплоты, полученное газом от нагревателя в процессах
1-2-4-1 и 1-2-3-1 одинаково. А вот работа газа в процессе 1-2-4-1 вдвое меньше (так площадь треугольника 1-2-4 как вдвое меньше площади треугольника 1-2-4-1). Поэтому коэффициент полезного действия процесса 1-2-4-1 вдвое меньше коэффициента полезного действия процесса 1-2-3-1 (ответ 1).

Источник

Задачи средней сложности, для решения нужна только внимательность. Никаких «подвохов»- все математически четко и понятно.

Задача 1. Температура идеального газа в состоянии 1 была . Чему равна температура в состоянии 3 после осуществления процесса 1-2-3, изображенного на диаграмме ? К.

К задаче 1

Процесс 1-2 – изохорный. Запишем закон Шарля.

   

   

Процесс 2-3 – не изотермический, поэтому просто запишем уравнение состояния:

   

Откуда

   

Ответ: 1800 К.

Задача 2. Идеальный одноатомный газ, находящийся при нормальных условиях, переводят из состояния 1 в состояние 2 двумя способами: 1-3-2 и 1-4-2. Найдите отношение количеств теплоты, которые необходимо сообщить 1 кмоль газа в этих двух процессах.

К задаче 2

Рассмотрим переход 1-3-2. Процесс 1-3 – изохора, работа не совершается. Но температура растет, определим, как.

   

   

Процесс 3-2 – изобара. Работа в процессе 3-2 равна

   

   

   

Изменение температуры составило . Следовательно, можем определить изменение внутренней энергии:

   

Теперь найдем общее количество теплоты, переданное газу при таком переходе:

   

Процесс перехода 1-4-2 отличается только совершенной работой. Определим ее:

   

   

Определим отношение количеств теплоты:

   

Ответ: .

Задача 3. Идеальный одноатомный газ, взятый в количестве 1 моль, переводят из состояния 1 в состояние 4. Какое количество теплоты  сообщили в этом процессе газу? Масса газа во время процесса не меняется.

К задаче 3

Определим сначала изменение внутренней энергии, для этого составим объединенный газовый закон для точек 1 и 4.

   

   

Изменение внутренней энергии равно

   

Теперь определим работу. Работу удобно определить как площадь под кривой процесса. Разобьем эту площадь на удобные «куски» – трапеции.

К задаче 3. Определяем работу

   

Теперь найдем общее количество теплоты, переданное газу:

   

Ответ: 1450 Дж.

Задача 4. На рисунке представлена диаграмма цикла с одноатомным идеальным газом, взятым в количестве 0,3 моль. Участки и – адиабаты.  Определите работу, совершенную газом на участке .

К задаче 4

Участок по условию – адиабата, то есть передачи тепла газу на этом участке не происходит, следовательно, работа будет совершена за счет «внутренних резервов» – то есть внутренней энергии. Нужно, следовательно, найти, как она изменилась.

Читайте также:  Задержка на следующий цикл после неудачного эко

Задачу можно решить двумя способами. Во-первых, просто определить температуры в точках и , это легко сделать из данных графика с помощью уравнения Менделеева-Клапейрона, и затем посчитать . Но, так как , а ,то изменение внутренней энергии будет равно

   

Ответ: 1350 Дж.

Задача 5. Один моль одноатомного идеального газа расширяется сначала изобарно, а затем по линейному закону, причем прямая линия проходит через начало координат  .  . Найдите , если количество тепла, сообщенное газу на участке 1-2, в 4 раза меньше работы, совершенной на участке 2-3.

К задаче 5

Определим количество тепла, сообщенное газу на участке 1-2, и работу, совершенную на участке 2-3.

Для изобарного процесса 1-2 запишем закон Гей-Люссака:

   

Откуда

   

Следовательно, изменение внутренней энергии газа равно

   

Работа на этом участке равна площади под графиком, под участком 1-2:

   

Тогда тепло, переданное газу, равно

   

Теперь рассмотрим процесс 2-3. Нам нужно определить лишь работу газа на этом участке. Площадь под этим участком – трапеция, поэтому

   

Из подобия треугольников и запишем:

   

   

Тогда

   

Так как по условию , то

   

Так как , то

   

Сократим, что возможно:

   

Из первой записанной нами формулы  (закона Гей-Люссака) следует, что

   

Тогда

   

Или

   

Введем замену :

   

   

   

   

Понятно, отрицательный корень нас не интересует.

Ответ: .

Источник

Определение

Числом степеней свободы механической системы называют количество независимых величин, с помощью которых может быть задано положение системы.

Внутренняя энергия идеального газа представляет собой сумму только кинетической энергии всех молекул, а потенциальной энергией взаимодействия можно пренебречь:

U=∑Ek0=NEk0=mNAM·ikT2=i2·mMRT=i2νRT=i2pV

i — степень свободы. i = 3 для одноатомного (или идеального) газа, i = 5 для двухатомного газа, i = 6 для трехатомного газа и больше.

Изменение внутренней энергии идеального газа в изопроцессах

Основная формула

ΔU=32·mMRT=32νRT=32νR(T2−T1)

Изотермический процесс

ΔU=0

Температура при изотермическом процессе — величина постоянная. Так как внутренняя энергия идеального газа постоянной массы в замкнутой системе зависит только от изменения температуры, то она тоже остается постоянной.

Изобарное расширение

ΔU=32νR(T2−T1)=32(pV2−pV1)=32pΔV

Изохорное увеличение давления

ΔU=32νR(T2−T1)=32(p2V−p1V)=32VΔp

Произвольный процесс

ΔU=32νR(T2−T1)=32(p2V2−p1V1)

Пример №1. На рисунке показан график циклического процесса, проведенного с идеальным газом. На каком из участков внутренняя энергия газа уменьшалась?

Внутренняя энергия газа меняется только при изменении температуры. Так как она прямо пропорциональная температуре, то уменьшается она тогда, когда уменьшается и температура. Температура падает на участке 3.

Работа идеального газа

Если газ, находящийся под поршнем, нагреть, то, расширяясь, он поднимет поршень, т.е. совершит механическую работу.

Механическая работа вычисляется по формуле:

A=Fscosα

Перемещение равно разности высот поршня в конечном и начальном положении:

s=h2−h1

Также известно, что сила равна произведению давления на площадь, на которое это давление оказывается. Учтем, что направление силы и перемещения совпадают. Поэтому косинус будет равен единице. Отсюда работа идеального газа равна произведению давления на площадь поршня:

Работа идеального газа

F=pS

p — давление газа, S — площадь поршня

Работа, необходимая для поднятия поршня — полезная работа. Она всегда меньше затраченной работы, которая определяется изменением внутренней энергии идеального газа при изобарном расширении:

A‘=p(V2−V1)=pΔV>0

Внимание! Знак работы определяется только знаком косинуса угла между направлением силы, действующей на поршень, и перемещением этого поршня.

Работа идеального газа при изобарном сжатии:

A‘=p(V2−V1)=pΔV<0

Работа идеального газа при нагревании газа:

A‘=νRΔT=νR(T2−T1)=mMνRΔT

Внимание! В изохорном процессе работа, совершаемая газом, равна нулю, так как работа газа определяется изменением его объема. Если изменения нет, работы тоже нет.

Геометрический смысл работы в термодинамике

В термодинамике для нахождения работы можно вычислить площадь фигуры под графиком в осях (p, V).

Примеры графических задач

Изобарное расширение:

A‘=p(V2−V1)

A‘>0

Изобарное сжатие:

A‘=p(V2−V1)

A‘<0

Изохорное охлаждение:

V=const

A‘=0

Изохорное охлаждение и изобарное сжатие:

1–2: A‘=0

2–3:

A‘=pΔV<0

Замкнутый цикл: 1–2:

A‘>0

2–3:

A‘=0

3–4:

A‘<0

4–1:

A‘=0

A‘=(p1−p3)(V2−V1)

Произвольный процесс:

A‘=p1+p22(V2−V1)

Пример №2. На pV-диаграмме показаны два процесса, проведенные с одним и тем же количеством газообразного неона. Определите отношение работ A2 к A1 в этих процессах.

Неон — идеальный газ. Поэтому мы можем применять формулы, применяемые для нахождения работы идеального газа. Работа равна площади фигуры под графиком. С учетом того, что в обоих случаях изобарное расширение, получим:

A2=p(V2−V1)=4p(5V−3V)=4p2V=8pV

A1=p(V2−V1)=p(5V−V)=4pV

Видно, что работа, совершенная во втором процессе, вдвое больше работы, совершенной газом в первом процессе.

Алиса Никитина | ???? Скачать PDF |

Источник