Цикл жизни сфере эксплуатации

Цикл жизни сфере эксплуатации thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 20 сентября 2020; проверки требует 1 правка.

Запрос «PLM» перенаправляется сюда; о языке программирования см. PL/M.

Жизненный цикл изделия (жизненный цикл продукции) – совокупность явлений и процессов, повторяющаяся с периодичностью, определяемой временем существования типовой конструкции изделия от её замысла до утилизации или конкретного экземпляра изделия от момента завершения его производства до утилизации (ГОСТ Р 56136-2014)[1]. Является частным случаем жизненного цикла системы применительно к изделиям промышленного производства.

Стадии и этапы жизненного цикла[править | править код]

Жизненный цикл включает несколько стадий, то есть частей жизненного цикла, выделяемых по признакам характерных для неё явлений, процессов (работ) и конечных результатов[1]. Основные стадии жизненного цикла это научные исследования, проектирование, производство, эксплуатация, утилизация. Они могут включать по несколько этапов, например:

  • Маркетинговые исследования
  • Проектирование
  • Испытания
  • Планирование и технологическая проработка процессов изготовления
  • Закупка материалов и комплектующих изделий
  • Изготовление
  • Приёмка
  • Упаковка и хранение
  • Продажа и распределение
  • Монтаж и наладка
  • Использование по назначению
  • Техническое обслуживание и ремонт
  • Послепродажная техническая поддержка (послепродажное обслуживание)
  • Утилизация и (или) переработка

Планирование деятельности с учётом особенностей стадий и этапов жизненного цикла позволяет обеспечить безопасность продукции, уменьшить издержки, рационально спланировать работы на разных стадиях жизненного цикла изделий. Управление процессами жизненного цикла современного высокотехнологичного изделия является сложной задачей и решается с помощью специализированных технологий и автоматизированных систем управления жизненным циклом[2].

PLM-система (англ. product lifecycle management system) – система, в том числе прикладное программное обеспечение, для управления жизненным циклом изделий.

Создание изделия[править | править код]

Проектирование современных высокотехнологичных изделий осуществляется с помощью систем автоматизированного проектирования. В САПР машиностроительных отраслей промышленности принято выделять системы функционального, конструкторского и технологического проектирования. Первые из них называют системами расчётов и инженерного анализа или системами CAE (англ. computer-aided engineering). Системы конструкторского проектирования называют системами CAD (computer-aided de). Проектирование технологических процессов составляет часть технологической подготовки производства и выполняется в системах CAM (computer-aided manufacturing). Для решения проблем совместного функционирования компонентов САПР различного назначения, координации работы систем САЕ/CAD/САМ, управления проектными данными и проектированием разрабатываются системы, получившие название систем управления проектными данными PDM (product data management). Системы PDM либо входят в состав модулей конкретной САПР, либо имеют самостоятельное значение и могут работать совместно с разными САПР.

Начиная со стадии проектирования требуются услуги системы управления цепочками поставок – SCM. Цепь поставок обычно определяют как совокупность стадий увеличения добавленной стоимости продукции при её движении от компаний-поставщиков к компаниям-потребителям. Управление цепью поставок подразумевает продвижение материального потока с минимальными издержками.

Координация работы многих предприятий-партнёров с использованием интернет-технологий возлагается на системы электронной коммерции, иногда выделяемые в класс системам управления данными в едином информационном пространстве участников жизненного цикла изделия.

Производство изделия[править | править код]

Информационная поддержка этапа производства изделия осуществляется автоматизированными системами управления предприятием (АСУП) и автоматизированными системами управления технологическими процессами (АСУТП). К АСУП относятся интегрированные системы планирования ресурсов предприятия (ERP), системы планирования производства (MRP, MRP II), SCM-системы. Наиболее развитые системы ERP выполняют различные бизнес-функции, связанные с планированием производства, закупками, сбытом продукции, анализом перспектив маркетинга, управлением финансами, персоналом, складским хозяйством, учётом основных фондов и т. п. Системы MRP II ориентированы, главным образом, на бизнес-функции, непосредственно связанные с производством. SCM и MRP II могут быть реализованы как подсистемы ERP.

Промежуточное положение между АСУП и АСУТП занимает производственная исполнительная система – MES, предназначенная для решения оперативных задач управления проектированием, производством и маркетингом.

В состав АСУТП входит система SCADA, выполняющая диспетчерские функции (сбор и обработка данных о состоянии оборудования и технологических процессов) и помогающая разрабатывать программное обеспечение для встроенного оборудования. Для непосредственного программного управления технологическим оборудованием используют системы CNC (computer numerical control на базе специализированных промышленных компьютеров, встроенных в технологическое оборудование с числовым программным управлением.

Эксплуатация изделия[править | править код]

Советский энциклопедический словарь определяет понятие «эксплуатация» как производное от фр. exploitation (использование, извлечение выгоды) и описывающее, в частности, «использование средств труда и транспорта».[3]

В технике понятие «эксплуатация» определяется ГОСТ 25866-83 как стадия жизненного цикла изделия, на которой реализуется, поддерживается и восстанавливается их качество. Стадия эксплуатации в общем случае включает использование изделия по назначению, его транспортирование, хранение, техническое обслуживание и ремонт. Для сложных видов техники (авиационной, морской, ракетной и т. п.) в нормативной документации может быть установлена номенклатура видов ремонта, входящих в эксплуатацию (например, текущий или средний ремонт), и выполняемых на условиях вывода изделия из эксплуатации (капитальный ремонт).

Для совокупности выполняемых на стадии эксплуатации изделия работ по его транспортированию, хранению, техническому обслуживанию и ремонту используют производное от «эксплуатация» понятие «техническая эксплуатация» (ГОСТ 25866-83, п. 2)[4]

В отдельных видах техники для обозначения процесса её использования по назначению применяют производные от термина «эксплуатация», например, «лётная эксплуатация воздушного судна».[5]

Для установления взаимодействия поставщика с приобретателем изделия уже на этапе реализации продукции определяются отношения поставщика с заказчиками и покупателями, проводится анализ рыночной ситуации, определяются перспективы спроса на планируемые изделия. Эти функции реализуются с помощью системы CRM.

Концепция управления жизненным циклом изделия[править | править код]

Управление данными в информационном пространстве, едином для различных автоматизированных систем, возлагается на систему управления жизненным циклом продукции – PLM (product lifecycle management). Технологии PLM объединяют методы и средства информационной поддержки изделий на всех этапах их жизненного цикла. При этом обеспечивается взаимодействие как средств автоматизации разных производителей, так и различных автоматизированных систем многих предприятий, то есть технологии PLM являются основой, интегрирующей информационное пространство, в котором функционируют САПР, ERP, PDM, SCM, CRM и другие автоматизированные системы разных предприятий.

Читайте также:  Отражение хозяйственных операций учетные циклы

Концепция управления жизненным циклом изделия (англ. PLM) была впервые представлена American Motors Corporation (AMC) в 1985 году для повышения конкурентоспособности своей продукции[6][7][8]. По словам Франсуа Кастайна, вице-президента по проектированию и разработке: «Не имея огромных бюджетов у General Motors, Ford и иностранных конкурентов … AMC сделала упор на НИОКР, чтобы поддержать жизненный цикл своей первичной продукции (в частности, Jeep)»[9].

Первым этапом в стремлении ускорить разработку продукта стала программная система автоматизированного проектирования (САПР), которая сделала инженеров более продуктивными[8]. Вторым этапом была новая система управления данными об изделиях, которая позволяла быстрее разрешать конфликты и сокращала сроки внесения инженерных изменений, поскольку все чертежи и документы находились в центральной базе данных[8]. Управление инженерными данными было настолько эффективным, что после приобретения AMC компанией Chrysler система была внедрена во всех подразделениях предприятия, участвующих в создании продукции[8]. Будучи пионером в технологии PLM, Chrysler смог стать самым дешевым производителем в автомобильной промышленности, затраты на разработку к середине 1990-х годов составляли половину среднего показателя по отрасли[8].

Параллельно, начиная с 1982-83 годов, компания Rockwell International разработала первоначальные концепции PDM и PLM для программы бомбардировщиков B-1B[10]. Система Engineering Data System (EDS) была интегрирована с системами Computervision и CADAM для отслеживания конфигурации изделий и жизненного цикла продукции. Позднее была выпущена версия Computervison, в которой реализованы только аспекты PDM, поскольку модель жизненного цикла была специфична для продукции Rockwell и аэрокосмической отрасли.

Примечания[править | править код]

  1. ↑ 1 2 ГОСТ Р 56136-2014. Управление жизненным циклом продукции военного назначения. Термины и определения. Стандартинформ. Дата обращения: 19 декабря 2018.
  2. ↑ ГОСТ Р 56135-2014. Управление жизненным циклом продукции военного назначения. Общие положения. Стандартинформ. Дата обращения: 19 декабря 2018.
  3. ↑ Советский энциклопедический словарь / Под ред. А.М. Прохорова. – Изд. 2. – Москва: Советская Энциклопедия, 1983. – С. [1532] (стб. 3). – 1600 с. – 125 000 (доп. тир.) экз. – ISBN 5-85270-001-0.
  4. ↑ Большая российская энциклопедия – понятие “Техническая эксплуатация” (неопр.). https://bigenc.ru. Минкульт России. Дата обращения: 11 января 2018.
  5. ↑ Авиация : Энциклопедия / Гл. ред. Г.П. Свищёв. – Москва: Большая российская энциклопедия : ЦАГИ, 1994. – С. [669] (стб. 1). – 735 с. – 25 000 экз. – ISBN 5-85270-086-X.
  6. ↑ Cunha, Luciano. Manufacturing Pioneers Reduce Costs By Integrating PLM & ERP. – onwindows.com. Retrieved 7 February 2017., 20 July 2010.
  7. ↑ Wong, Kenneth. What PLM Can Learn from . – Retrieved 7 February 2017. – 29 July 2009.
  8. ↑ 1 2 3 4 5 Hill, Jr., Sidney. How To Be A Trendsetter: Dassault and IBM PLM Customers Swap Tales From The PLM Front // COE newsnet. d from the original on 13 February 2009. Retrieved 7 February 2017. – May 2003.
  9. ↑ Pearce, John A.; Robinson, Richard B. Formulation, implementation, and control of competitive strategy (4 ed.) // Irwin. p. 315. Retrieved 7 February 2017. – ISBN 978-0-256-08324-8.
  10. ↑ “Projects Past”. Brian’s Blog. 16 September 2013. Retrieved 7 February 2017. “Projects Past”..

См. также[править | править код]

  • Жизненный цикл системы
  • Жизненный цикл программного обеспечения

Источник

1.3. Жизненный цикл оборудованияЖизненный цикл оборудования включает следующие стадии:

  1. Проектирование.
  2. Изготовление (в том числе сборка).
  3. Транспортирование и хранение.
  4. Ввод в эксплуатацию (монтаж).
  5. Использование по назначению, включая операции по техническому обслуживанию и ремонту (наиболее продолжительная стадия).
  6. Прекращение эксплуатации (демонтаж).
  7. Утилизация.

Эксплуатация – стадия жизненного цикла оборудования, на которой реализуется, поддерживается и восстанавливается качество изделия. Эксплуатация оборудования включает, как правило, ввод в эксплуатацию, использование по назначению, хранение при эксплуатации, транспортирование при эксплуатации, техническое обслуживание и ремонт, прекращение эксплуатации, списание (передача, утилизация, уничтожение).

Монтаж – установка грузоподъёмного крана (машины) или его составных частей на месте использования. [1, п. 2.1.26]

Демонтаж – снятие грузоподъёмного крана или машины или его составных частей с места установки. [1, п. 2.1.10]

Модернизация – внесение изменений в конструкцию грузоподъёмного крана или машины, повышающих их безопасность, технический уровень и улучшающих экономические характеристики путём замены отдельных составных частей на более современные, в том числе замена системы управления при сохранении основных технических характеристик грузоподъёмного крана или машины, которые не вызывают повышения, перераспределения или изменения интенсивности нагрузок и уменьшения грузовой или собственной устойчивости. [1, п. 2.1.25]

Реконструкция – изменение основных технических характеристик крана или машины (грузоподъёмности, режимов работы, скорости механизмов, пролета, вылета, диапазона подъёма, конструкции грузозахватных органов, удлинения или укорачивания стрелы или консоли, башни), изменение типа привода (ручной или механический на электрический или гидравлический и т.п.), изменение места и (или) вида управления (из кабины, с пола, со стационарного пульта и т.п.), а также другие изменения, которые обеспечивают повышение, перераспределение или изменение интенсивности нагрузок, а также уменьшение грузовой или собственной устойчивости. [1, п. 2.1.42]

Ремонт – восстановление поврежденных, отработанных или ставших непригодными по любой причине составных частей грузоподъёмных кранов и машин (металлических конструкций, механизмов, гидропривода, электропривода, приборов и устройств безопасности и т.п.) с приведением грузоподъёмных кранов и машин в работоспособное и исправное состояние, в том числе проведенное в соответствии с системой планово-предупредительных ремонтов. [1, п. 2.1.43]

Наладка – комплекс операций или операция по регулированию приборов и устройств безопасности, механизмов, электрооборудования, гидроустройств и прочего грузоподъёмных кранов и машин, которые осуществляются с целью их подготовки к использованию по назначению и проводятся как собственником грузоподъёмного крана или машины, так и специализированной организацией. [1, п. 2.1.28]

Читайте также:  Матка в начале цикла

Технический осмотр – комплекс работ по контролю технического состояния, который осуществляется преимущественно с использованием органолептических методов и средств измерительной техники, номенклатура которых определена организационно-методическими документами, и испытанию оборудования (полное техническое освидетельствование) или только освидетельствованию (частичный технический осмотр), которые проводятся в срок, в случаях и в объеме, определенных нормативно-правовыми актами по охране труда, организационно-методическими и эксплуатационными документами. [1, п. 2.1.50]

Перечень ссылок

  1. НПАОП 0.00-1.01-07. Правила будови і безпечної експлуатації вантажопідіймальних кранів // Затв. Наказом Державного комітету України з промислової безпеки, охорони праці та гірничого нагляду 18.06.2007 №132.

Вопросы для контроля

  1. Какие стадии проходит оборудование в течение своего жизненного цикла?
Материал предоставил СИДОРОВ Александр Владимирович.

Источник

Жизненный цикл системы – это стадии процесса, охватывающие различные состояния системы, начиная с момента возникновения необходимости в такой системе и заканчивая её полным исчезновением или выводом из эксплуатации[1]:19; конечное множество типовых фаз и этапов, через которые система может проходить за всю историю своей жизни[2].

Жизненный цикл – это не временной период существования, а процесс последовательного изменения состояния, обусловленный видом производимых воздействий (Р 50-605-80-93)[3].

Под жизненным циклом технической (инженерной) системы обычно понимают её эволюцию в виде нескольких «ступеней», включающих такие важные стадии, как концепция, разработка, производство, эксплуатация и окончательное выведение из эксплуатации[4]:70.

В стандартах системной инженерии описаны четыре основных принципа моделирования жизненного цикла, а именно:

  • В течение своей жизни система развивается, проходя через определенные стадии.
  • На каждой стадии жизненного цикла должны быть доступны подходящие обеспечивающие системы (англ. enabling systems), только в этом случае могут быть достигнуты результаты, запланированные для этой стадии.
  • На определенных стадиях жизненного цикла такие атрибуты, как технологичность, удобство использования, пригодность к обслуживанию и возможность удаления отходов, должны быть специфицированы и практически реализованы.
  • Переход к следующей стадии возможен только при условии полного достижения результатов, запланированных для текущей стадии.

В полном жизненном цикле любой системы всегда присутствуют типовые стадии, каждая из которых имеет характерные только для неё цели и вносит свой вклад в полный жизненный цикл[5]:10.

История концепции жизненного цикла[править | править код]

Концепция жизненного цикла возникла в конце XIX в. как комплекс идей, включающих в себя идеи наследственности и развития на уровне индивидуумов и организмов, а также адаптации, выживания и вымирания на уровне отдельных видов и целых популяций живых организмов[6].

Типовые модели жизненного цикла системы[править | править код]

Модели жизненного цикла системы получили значительное распространение в последние два десятилетия. Некоторые модели развивались как дополнительные уникальные и пользовательские приложения в исследованиях. Кроме того, разработка программного обеспечения повлекла за собой формирование новых моделей разработки, которые впоследствии были приняты системным сообществом[4]:71.

Не существует единой модели жизненного цикла, удовлетворяющей требованиям любой возможной задачи. Различные организации по стандартизации, правительственные учреждения и инженерные сообщества публикуют свои собственные модели и технологии, которые могут быть использованы для конструирования модели. Таким образом нецелесообразно утверждать о существовании единственно возможного алгоритма построение модели жизненного цикла.

Некоторые специалисты по системной инженерии предлагают рассматривать модель жизненного цикла системы, на основе следующих трех источников: модель управления материально-техническим обеспечением Министерства Обороны США (МО США) (DoD 5000.2), модель стандарта ISO/IEC 15288 и модель Национального общества профессиональных инженеров (NSPE)[4]:71.

Типовая модель жизненного цикла по стандарту ISO/IEC 15288[править | править код]

В 2002 году Международная организация по стандартизации и Международная электротехническая комиссия выпустили результат многолетней работы – стандарт ISO/IEC 15288:2002 (см. русскоязычный аналог ГОСТ Р ИСО МЭК 15288-2005)[7].

Согласно стандарту, процессы и действия жизненного цикла определяются, соответствующим образом настраиваются и используются в течение стадии жизненного цикла, для полного удовлетворения целей и результатов на этой стадии. В различных стадиях жизненного цикла могут принимать участие разные организации. Не существует единой универсальной модели жизненных циклов систем. Те или иные стадии жизненного цикла могут отсутствовать или присутствовать в зависимости от каждого конкретного случая разработки системы[7]:34.

В стандарте в качестве примера были приведены следующие стадии жизненного цикла:

  1. Замысел.
  2. Разработка.
  3. Производство.
  4. Применение.
  5. Поддержка применения.
  6. Прекращение применения и списание.

В версии стандарта от 2008 года (ISO/IEC 15288:2008) и в последующих версиях примеры стадий жизненного цикла отсутствуют[8].

Типовая модель жизненного цикла по версии Министерства обороны США[править | править код]

Для управления рисками в области применения передовых технологий, и сведения к минимуму дорогостоящих технических или управленческих ошибок, МО США разработало руководство, содержащее все необходимые принципы разработки систем. Эти принципы вошли в специальный перечень директив – DoD 5000.

Модель жизненного цикла системы управления материально-техническим обеспечением по версии МО США состоит из пяти стадий[4]:71:

  1. Анализ.
  2. Разработка технологии.
  3. Инженерная и производственная разработка.
  4. Производство и развертывание.
  5. Функционирование и поддержка.

Типовая модель жизненного цикла системы Национального общества профессиональных инженеров (NSPE)[править | править код]

Этот вариант модели жизненного цикла NSPE адаптирован для коммерческих систем и направлен на развитие новых продуктов, обычно являющихся результатом технического прогресса. Жизненный цикл по модели NSPE разбивается на шесть стадий[4]:72:

  1. Концепция.
  2. Техническая реализация.
  3. Разработка.
  4. Коммерческая валидация и подготовка производства.
  5. Полномасштабное производство.
  6. Поддержка конечного продукта.

Типовая модель жизненного цикла продукции по Р 50-605-80-93[править | править код]

В руководящем документе Р 50-605-80-93 рассматривается жизненный цикл промышленного изделия, в том числе – военной техники[3].

Читайте также:  Циклы и программирование fanuc

Для промышленной продукции гражданского назначения предложены следующие стадии:

  1. Исследование и проектирование.
  2. Изготовление.
  3. Обращение и реализация.
  4. Эксплуатация или потребление.

В рамках жизненного цикла промышленной продукции гражданского назначения предложено рассматривать 73 вида работ и 23 типа стейкхолдеров («участников работ» по терминологии документа).

Для промышленной продукции военного назначения предложены следующие стадии:

  1. Исследование и обоснование разработки.
  2. Разработка.
  3. Производство.
  4. Эксплуатация.
  5. Капитальный ремонт.

В рамках жизненного цикла промышленной продукции военного назначения предложено рассматривать 25 видов работ и 7 типов стейкхолдеров (участников работ).

Типовая модель жизненного цикла программного обеспечения[править | править код]

Стадии жизненного цикла системы и их составные фазы, представленных на рисунке «Модель жизненного цикла системы», относятся к большинству сложных систем, в том числе к тем, которые содержат программное обеспечение со значительным объемом функциональных возможностей на уровне компонентов. В программно-интенсивных системах, в которых программное обеспечение выполняет практически все функции (как например в современных финансовых системах, в системах бронирования авиабилетов, в глобальной сети интернет, и в др.), как правило жизненные циклы схожи по содержанию, но часто усложняются итерационными процессами и прототипированием[4]:72-73.

Основные стадии жизненного цикла системы (Kossiakoff, Sweet, Seymour, Biemer)[править | править код]

Как показано на рисунке «Модель жизненного цикла системы», модель жизненного цикла системы содержит 3 стадии. Первые 2 стадии приходятся на разработку, а третья стадия охватывает пост-разработку. Эти стадии показывают более общие переходы из состояния в состояние, в жизненном цикле системы, а также показывают изменения в типе и объеме действий, вовлеченных в системную инженерию. Стадии представляют собой[4]:73:

  • стадию разработки концепции;
  • стадию технической разработки;
  • стадию пост-разработки.

Стадия разработки концепции[править | править код]

Целью стадии разработки концепции являются оценки новых возможностей в сфере применения системы, разработка предварительных системных требований и возможных проектных решений. Стадия разработки концептуального проекта начинаются с момента осознания необходимости создания новой системы или модификации уже имеющейся. Стадия включает в себя начало исследований фактов, периода планирования, оцениваются экономические, технические, стратегические и рыночные основы будущих действий. Осуществляется диалог между стейкхолдерами и разработчиками[8].

Модель жизненного цикла системы

Основные цели стадии разработки концепции[4]:74:

  1. Провести исследования, установив, что является необходимым для новой системы, а также установив техническую и экономическую целесообразность данной системы.
  2. Изучить потенциально возможные концепции системы, а также сформулировать и подвергнуть валидации набор требований к производительности системы.
  3. Выбрать наиболее привлекательную концепцию системы, определить её функциональные характеристики, а также разработать детальный план последующих стадий проектирования, производства и оперативного развертывания системы.
  4. Разработать любую новую технологию, подходящую для выбранной концепции системы и подвергнуть валидации её способности удовлетворять потребности.

Стадия технической разработки[править | править код]

Стадия технической разработки подразумевает процесс проектирования системы для реализации функций, сформулированных в концепции системы, в физическое воплощении, которые могут поддерживаться и успешно эксплуатироваться в своей операционной среде. Системная инженерия в первую очередь касается направления развития разработки и проектирования, управления интерфейсами, разработки планов тестирования, и определяет, как расхождения в производительности системы, не проверенной во время тестирования и оценки, должны быть надлежащим образом исправлены. Основная масса инженерных действий осуществляется на этой стадии.

Основными целями стадии технической разработки являются[4]:74:

  1. Выполнение технической разработки прототипа системы, отвечающего требованиям производительности, надежности, ремонтопригодности и безопасности.
  2. Спроектировать систему пригодную для использования, и продемонстрировать свою оперативную пригодность.

Стадия пост-разработки[править | править код]

Стадия пост-разработки состоит из деятельности за пределами периода разработки системы, но все еще требует значительной поддержки со стороны системных инженеров, особенно когда встречаются непредвиденные проблемы, требующие скорейшего разрешения. Кроме того, достижения в области технологий часто требуют внутренней модернизации системы обслуживания, которая может быть столь же зависимой от системной инженерии, как стадии концепции и технической разработки.

Стадия пост-разработки новой системы начинается после успешно проведенной операции тестирования и оценивания данной системы (тестирование приёмки), выпуска в производство и последующим оперативным использованием. Пока основная разработка не будет завершена, системная инженерия будет продолжать играть главную поддерживающую роль[4]:74.

Принципиальные стадии в жизненном цикле системыЭтапы концептуальной разработки в жизненном цикле системыЭтапы технической разработки в жизненном цикле системы

Примечания[править | править код]

  1. ↑ Blanchard, Fabrycky, 2006.
  2. ↑ ISO 15704, 2000.
  3. ↑ 1 2 Р 50-605-80-93, 1993.
  4. ↑ 1 2 3 4 5 6 7 8 9 10 Kossiakoff, Sweet, Seymour, Biemer, 2011.
  5. ↑ Батоврин, Бахтурин, 2012.
  6. ↑ Широкова Г. В., Клемина Т. Н., Козырева Т. П. Концепция жизненного цикла в современных организационных и управленческих исследованиях // Вестник Санкт-Петербургского университета. Серия «Менеджмент». Сер. 8. Вып. 2, 2007, с. 3-31
  7. ↑ 1 2 ГОСТ Р ИСО/МЭК 15288, 2005.
  8. ↑ 1 2 ISO/IEC 15288, 2008.

Литература[править | править код]

  • Blanchard B. S., Fabrycky Wolter J. Systems engineering and analysis. – 4-е изд. – Prentice Hall, 2006.
  • ISO/IEC 15288:2008 Systems and software engineering – Life cycle processes
  • ISO 15704:2000 Industrial automation systems – Requirements for enterprise-reference architectures and methodologies (ГОСТ Р ИСО 15704-2008 Требования к стандартным архитектурам и методологиям предприятия)
  • Kossiakoff A., Sweet W. N., Seymour S. J., Biemer S. M. Systems Engineering Principles and Practice. – 2-е изд. – Hoboken, New Jersey: A John Wiley & Sons, 2011. – 599 с. – ISBN 978-0-470-40548-2.
  • Батоврин В. К., Бахтурин Д. А. Управление жизненным циклом технических систем. – 2012.
  • ГОСТ Р ИСО/МЭК 15288-2005 Информационная технология. Системная инженерия. Процессы жизненного цикла систем
  • Р 50-605-80-93. Рекомендации. Система разработки и постановки продукции на производство. Термины и определения (Ссылка на текст).

Источник