Цикл кальвина при фотосинтезе

Схема цикла. Чёрные кружки – атомы углерода, красные – кислорода, фиолетовые – фосфора, маленькие белые окружности – атомы водорода
Восстановительный пентозофосфатный цикл, или цикл Кальвина – серия биохимических реакций, осуществляемая при фотосинтезе растениями (в строме хлоропластов), цианобактериями, прохлорофитами и пурпурными бактериями, а также многими бактериями-хемосинтетиками, является наиболее распространённым из механизмов автотрофной фиксации углекислого газа.
Назван в честь американского биохимика Мелвина Кальвина. Часто используются альтернативные названия, указывающие на роль коллег Кальвина в открытии данного биохимического пути (например: цикл Кальвина – Бенсона или цикл Кальвина – Бенсона – Бассама).[1][2]
Стадии[править | править код]
В цикл вовлекаются АТФ и НАДФ·Н, образованные в ЭТЦ фотосинтеза, углекислый газ и вода; основным продуктом является глицеральдегид-3-фосфат. Поскольку АТФ и НАДФ·Н могут образовываться в разных метаболических путях, цикл не следует рассматривать строго привязанным к световой фазе фотосинтеза.
Общий баланс реакций цикла можно представить уравнением:
3 CO2 + 6 НАДФ·Н + 6 H+ + 9 АТФ → C3H7O3-PO3 + 3 H2O + 6 НАДФ+ + 9 АДФ + 8 Фн
Две молекулы глицеральдегид-3-фосфата используются для синтеза глюкозы.
Цикл состоит из трёх стадий: на первой под действием фермента рибулозобисфосфат-карбоксилаза/оксигеназа происходит присоединение CO2 к рибулозо-1,5-бисфосфату и расщепление полученной гексозы на две молекулы 3-фосфоглицериновой кислоты (3-ФГК). На второй 3-ФГК восстанавливается до глицеральдегид-3-фосфата (фосфоглицеральдегида, ФГА), часть молекул которого выходит из цикла для синтеза глюкозы, а другая часть используется в третьей стадии для регенерации рибулозо-1,5-бисфосфата.
Карбоксилирование[править | править код]
Карбоксилирование рибулозо-1,5-бисфосфата (5-углеродное соединение) осуществляется РиБисКО в несколько стадий. На первой кетонная группа рибулозы восстанавливается до спиртовой, между 2 и 3 атомами углерода устанавливается двойная связь. Полученное соединение нестабильно и именно оно карбоксилируется с образованием 2-карбокси-3-кето-D-арабитол-1,5-бисфосфата. Его структурный аналог 2-карбокси-D-арабитол-1,5-бисфосфат ингибирует весь процесс. Новое, уже 6-углеродное соединение, также нестабильно и распадается на две молекулы 3-фосфоглицериновой кислоты (3-фосфоглицерат, 3-ФГК).
Восстановление[править | править код]
Восстановление 3-фосфоглицериновой кислоты (3-ФГК) происходит в две реакции.
Сначала каждая 3-ФГК с помощью 3-фосфоглицераткиназы и с затратой одной АТФ фосфорилируется, образуя 1,3-бисфосфоглицериновую кислоту (1,3-бисфосфоглицерат).
Затем под действием глицеральдегид-1,3-фосфатдегидрогеназы бисфосфоглицериновая кислота восстанавливается НАД(Ф)·H (у растений и цианобактерий; у пурпурных и зелёных бактерий восстановителем является НАД·H) параллельно с отщеплением одного остатка фосфорной кислоты. Образуется глицеральдегид-3-фосфат (фосфоглицеральдегид, ФГА, триозофосфат). Обе реакции обратимы.
Регенерация[править | править код]
На последней стадии 5 молекул глицеральдегид-3-фосфатов превращаются в три молекулы рибулозо-1,5-бисфосфата.
Вначале под действием триозофосфатизомеразы[en] глицеральдегид-3-фосфат изомеризуется в дигидроксиацетонфосфат. Фруктозобисфосфатальдолаза объединяет их во фруктозо-6-фосфат с отщеплением остатка фосфорной кислоты. Затем следует ряд реакций перестройки углеродных скелетов и образуется рибулозо-5-фосфат. Он фосфорилируется фосфорибулокиназой и рибулозо-1,5-бисфосфат регенерирует.[3]
Открытие[править | править код]
С 1940-х гг. Мелвин Кальвин работал над проблемой фотосинтеза; к 1957 с помощью CO2, меченного по углероду, выяснил химизм усвоения растениями CO2 (восстановительный карбоновый цикл Кальвина) при фотосинтезе. Нобелевская премия по химии (1961).
См. также[править | править код]
- Ацетил-КоА-путь фиксации углекислого газа
- Восстановительный цикл трикарбоновых кислот (Цикл Арнона)
- Гетеротрофная фиксация углекислого газа
- Окислительный пентозофосфатный цикл
- Окислительное фосфорилирование
Примечания[править | править код]
- ↑ Govindjee, Helen Bassham, Susan Bassham. Remembering James Alan Bassham (1922-2012) // Photosynthesis Re. – April 2016. – Т. 128, вып. 1. – С. 3-13. – ISSN 1573-5079. – doi:10.1007/s11120-015-0201-2.
- ↑ Bob B. Buchanan, Wilhelm Gruissem, Russel L. Jones. Biochemistry & Molecular Biology of Plants. – Second Edition. – Chichester, West Sussex. – XV, 1264 с. – ISBN 9780470714218.
- ↑ Taiz, L., E. Zeiger, 2002. Plant Physiology. Sinauer Associates, Sunderland, MA 01375, USA
Ссылки[править | править код]
- Bassham J., Benson A., Calvin M. The path of carbon in photosynthesis Архивная копия от 19 февраля 2009 на Wayback Machine // J Biol Chem, 1950, № 185 (2): 781-7. (англ.)
- Calvin Cycle – Photosynthetic Dark Reaction (англ.)
Источник
Темновая фаза фотосинтеза связана с реакциями фиксации углерода, которые проходят в строме хлоропласта и продолжаются в цитоплазме без непосредственного поглощения света. В процессе световой фазы фотосинтеза накапливается достаточно высокий уровень АТФ и НАДФ·Н. Однако сами по себе эти макроэргические соединения не способны синтезировать углеводы из CO2. Становится очевидным, что и темновая фаза фотосинтеза – сложный процесс, включающий большое количество последовательно идущих реакций, возможных только после осуществления световой фазы.
Существует несколько разных путей связывания CO2 в углеводы, встречающихся у растений разных экологических и систематических групп, но основным, характерным для всех растений, является так называемый C3-путь фотосинтеза, или цикл Кальвина.
Способ ассимиляции СО2 в углеводы, присущий всем растениям, был расшифрован только в середине XX века американским биохимиком Мэлвином Кальвином и его коллегами на примере одноклеточных зеленых водорослей (хлореллы и др.) и зеленых листьев шпината. Исследование этой проблемы продолжалось 10 лет – с 1946 по 1966 год. Вначале ученые вели поиск первичного акцептора CO2. После ряда экспериментов они установили, что первичную фиксацию CO2 осуществляет пятиуглеродный сахар – рибулозо-1,5-дифосфат РуДФ). Фиксация осуществляется следующим образом: сначала происходит присоединение CO2 к молекуле РуДФ. При этом образуется промежуточный продукт – очень неустойчивое шестиуглеродное соединение, из которого в присутствии воды образуются две молекулы трехуглеродного соединения – 3-фосфоглицериновой кислоты (3-ФГК). В этой реакции для связывания одной молекулы CO2 затрачивается три молекулы АТФ и две молекулы НАДФ·Н.
Схема первичной фиксации CO2
Реакцию фиксации углерода, открытую в 1948 году, катализирует очень крупный фермент из стромы хлоропласта – рибулозобисфосфаткарбоксилазаоксигеназа (сокращенно – РУБИСКО). Так как фермент РУБИСКО работает весьма медленно, необходимо, чтобы его молекул в хлоропластах было много. Действительно, этот фермент обычно составляет более 50 % общего количества белков хлоропластов. Многие исследователи утверждают, что это самый распространенный белок в живой природе.
Дальнейшие исследования лаборатории Кальвина способствовали установлению всех последующих реакций C3-пути фотосинтеза, обеспечивающих синтез углеводов. За расшифровку механизма фиксации CO2 в процессе фотосинтеза М. Кальвин в 1961 году стал лауреатом Нобелевской премии по химии.
Цикл Кальвина состоит из трех стадий:
- карбоксилирования,
- восстановления,
- превращения.
Упрощенная схема цикла Кальвина – пути фиксации углерода при фотосинтезе
На первой стадии (карбоксилирование) фиксация углерода идет с участием ферментов и АТФ, полученной на световой фазе фотосинтеза; при этом образуются молекулы 3-фосфоглицериновой кислоты (3-ФГК). На второй стадии (восстановление) помимо АТФ используется НАДФ·Н. Здесь 3-ФГК восстанавливается до 3-фосфоглицеринового альдегида (З-ФГА), часть молекул которого идет на синтез 6-углеродного моносахарида (глюкозы или фруктозы). На третьей стадии (превращение) при повторении цикла другая часть молекул 3-ФГА используется для синтеза шестиатомного фосфорилированного моносахарида – фруктозо-1,5-дифосфата. Трехуглеродные фосфосахара вместе с множеством других продуктов метаболизма хлоропластов транспортируются в цитоплазму клетки, где образуют ди- и полисахариды (сахара, крахмал, целлюлозу или другие соединения).
В процессах темновой фазы фотосинтеза образуются углеводы – первичные органические вещества. На определенном этапе темновой фазы фотосинтеза судьба трехуглеродных молекул 3-фосфоглицериновой кислоты может оказаться различной. Одни из них соединяются друг с другом и образуют шестиуглеродные сахара, которые, в свою очередь, могут полимеризоваться в крахмал, целлюлозу и др. Некоторые могут использоваться для синтеза аминокислот, карбоновых кислот, спиртов и пр. Но целый ряд молекул ФГК вовлекается в длинный ряд реакций, приводящих к превращению трехуглеродных молекул в молекулы пятиуглеродного сахара (РуДФ), которые могут снова ассимилировать углекислый газ и многократно повторять этот цикл до тех пор, пока растение живет и получает световую энергию. Все процессы темновой фазы фотосинтеза идут без непосредственного потребления света, но в них большую роль играют макроэргические соединения (АТФ и НАДФ·Н), образующиеся во время световой фазы фотосинтеза. Доказано, что для синтеза одной молекулы глюкозы в цикле Кальвина необходимы 12 молекул НАДФ·Н и 18 молекул АТФ, которые поставляются с тилакоидных мембран в результате фотохимических реакций световой фазы фотосинтеза.
Схема синтеза 3-фосфоглицеринового альдегида (ФГА) в хлоропласте
В процессе темновой фазы энергия макроэргических связей АТФ преобразуется в химическую энергию органических соединений – молекул углеводов. Это означает, что энергия солнечного света как бы консервируется в химических связях между атомами органических веществ, что имеет огромное значение для энергетики биосферы и жизнедеятельности всего населения нашей планеты.
В настоящее время известны и другие пути ассимиляции углекислого газа наряду с системой его фиксации в цикле Кальвина (C3-пути фотосинтеза). Существует так называемый C4-путь ассимиляции углерода в фотосинтезе. Он может протекать при низких концентрациях CO2. Этот тип фиксации углекислого газа в фотосинтезе выработался в процессе эволюции у растений жарких, засушливых мест и наблюдается у кукурузы, сахарного тростника, проса, сорго, амаранта, лебеды, баклажанов и др., а также у растений, устойчивых к засолению почвы.
Существует и особый тип фотосинтеза у таких растений, как кактусы, молочаи, крассулы, каланхое, седумы и другие суккуленты, произрастающие в засушливых, безводных условиях. Эти растения запасают CO2 в виде органических кислот ночью, так как он поступает в клетки только тогда, когда открыты их устьица (днем они закрыты для предотвращения потери воды).
Источник
Calvin Cycle Definition
Цикл Кальвина – это цикл химических реакций, выполняемых растениями для «фиксации» углерода из CO2 в трехуглеродные сахара.
Позже растения и животные могут превратить эти трехуглеродные соединения в аминокислоты, нуклеотиды и более сложные сахара, такие как крахмалы.
Этот процесс «углеродной фиксации» – это то, как создается большинство новых органических веществ. Сахара, созданные в цикле Кельвина, также используются растениями для длительного хранения энергии, в отличие от АТФ, который быстро расходуется после его создания.
Эти растение Сахар также может стать источником энергии для животных, которые едят растения, и хищников, которые едят этих травоядных.
Цикл Кальвина также иногда называют «независимыми от света» реакциями фотосинтез, поскольку он не питается напрямую от фотонов от Солнца. Вместо этого цикл Кальвина питается от АТФ и NADPH, которые создаются путем использования энергии фотонов в светозависимых реакциях.
Функция цикла Кальвина
Функция цикла Кальвина заключается в создании трехуглеродных сахаров, которые затем могут быть использованы для создания других сахаров, таких как глюкоза, крахмал и целлюлоза, которые используются растениями в качестве строительного строительного материала. Цикл Кальвина выводит молекулы углерода прямо из воздуха и превращает их в растительное вещество.
Это делает цикл Кальвина жизненно важным для существования большинства экосистем, где растения образуют основу энергетическая пирамида, Без цикла Кальвина растения не смогут накапливать энергию в форме, которую могут переваривать травоядные. Хищники впоследствии не будут иметь доступа к энергии, хранящейся в телах травоядных!
Углеродные магистрали, созданные в цикле Кальвина, также используются растениями и животными для производства белков, нуклеиновых кислот, липидов и всех других строительных блоков жизни.
Цикл Кальвина также регулирует уровень углекислого газа, парникового газа, в атмосфере Земли. Ученые выразили обеспокоенность, потому что, помимо сжигания угля, нефти и бензина в огромных количествах CO2, люди также вырубили около половины всех лесов Земли, которые играют важную роль в удалении CO2 из воздуха. ,
Мы обсудим, как цикл Кальвина создает простые сахара из CO2 ниже.
Calvin Cycle Steps
Фиксация углерода
В углеродной фиксации, CO2молекула из атмосферы соединяется с акцепторной молекулой из пяти атомов углерода под названием рибулозо-1,5-бисфосфат (RuBP).
Полученное шестиуглеродное соединение затем разделяется на две молекулы трехуглеродного соединения, 3-фосфоглицериновой кислоты (3-PGA).
Эта реакция катализируется ферментом RuBP карбоксилаза / оксигеназой, также известным как RuBisCO. Из-за ключевой роли, которую он играет в фотосинтезе, RuBisCo, вероятно, является наиболее распространенным ферментом на Земле.
снижение
На второй стадии цикла Кальвина молекулы 3-PGA, созданные посредством углеродной фиксации, превращаются в молекулы простого сахара – глицеральдегид-3-фосфата (G3P).
Эта стадия использует энергию от АТФ и НАДФН, созданных в светозависимых реакциях фотосинтеза. Таким образом, цикл Кальвина становится способом, которым растения преобразуют энергию солнечного света в молекулы длительного хранения, такие как сахара. Энергия от АТФ и НАДФН передается сахарам.
Этот этап называется «восстановлением», потому что НАДФН отдает электроны молекулам 3-фосфоглицериновой кислоты с образованием глицеральдегид-3-фосфата. В химии процесс пожертвования электронов называется «восстановлением», а процесс взятия электронов называется «окислением».
перерождение
Некоторые молекулы глицеральдегид-3-фосфата идут на образование глюкозы, в то время как другие должны быть переработаны для регенерации пятиуглеродного соединения RuBP, которое используется для приема новых молекул углерода.
Процесс регенерации требует АТФ. Это сложный процесс, включающий много шагов.
Поскольку для получения глюкозы требуется шесть молекул углерода, этот цикл необходимо повторить шесть раз, чтобы получить одну молекулу глюкозы.
Чтобы выполнить это уравнение, пять из шести молекул глицеральдегид-3 фосфата, которые создаются в цикле Кельвина, регенерируются с образованием молекул RuBP. Шестой выходит из цикла, чтобы стать половиной молекулы глюкозы.
Calvin Cycle Diagram
Calvin Cycle Products
Каждый оборот цикла Кальвина «фиксирует» одну молекулу углерода, которую можно использовать для производства сахара.
Чтобы создать одну молекулу глицеральдегид-3-фосфата, требуется три оборота цикла Кальвина.
После шести оборотов цикла Кальвина две молекулы глицеральдегид-3-фосфата могут быть объединены в молекулу глюкозы.
Каждый оборот цикла Кальвина также использует 3 АТФ и 2 НАДФН в процессах восстановления (добавления электронов) 3-фосфоглицериновой кислоты с образованием глицеральдегид-3-фосфата и регенерации RuBP, чтобы они могли принимать новый атом углерода из CO2 с воздуха.
Это означает, что для производства одной молекулы глюкозы потребляется 18 АТФ и 12 НАДФН.
- хлоропластов – органеллы в растительных клетках, где энергия солнечного света превращается в АТФ и сахар.
- Энергетическая пирамида – Диаграмма, которая иллюстрирует поток энергии через экосистема,
- фотосинтез – Процесс, с помощью которого живые существа захватывают энергию солнечного света и используют ее для производства топлива и органических материалов для создания своих клеток.
викторина
1. Почему цикл Кальвина важен для большинства экосистем?A. Он превращает углекислый газ из воздуха в углерод, который живые существа могут использовать для производства сахаров, белков, нуклеотидов и липидов.B. Он накапливает энергию солнечного света в форме длительного хранения сахара, который может использоваться растениями или съедаться животными для формирования основы пищевой цепи.C. Это удаляет углекислый газ, который является парниковым газом, из воздуха.D. Все вышеперечисленное.
Ответ на вопрос № 1
D верно. Все вышеперечисленное является причиной важности цикла Кальвина!
2. Почему вторая фаза цикла Кальвина называется «редукция»?A. Потому что это уменьшает количество атомов углерода в 3-фосфоглицериновой кислоте.B. Потому что это уменьшает количество энергии в общей системе.C. Потому что НАДФН отдает электроны 3-фосфоглицериновой кислоте, которая представляет собой химический процесс, называемый «восстановлением».D. Ни один из вышеперечисленных.
Ответ на вопрос № 2
С верно. В химии «уменьшить» что-то означает дать ему электроны. НАДФН придает электронам 3-фосфоглицеридное действие на стадии «восстановления» цикла Кальвина.
3. Каков источник АТФ и НАДФН, используемых в цикле Кальвина?A. Аэробного дыхания происходит в митохондрии,B. Энергия, получаемая от солнечного света в хлоропластах.C. Энергия собирается из летучих химических веществ, таких как железо, водород или аммиак.D. Ни один из вышеперечисленных.
Ответ на вопрос № 3
В верно. Цикл Кальвина питается энергией, получаемой от солнечного света в хлоропластах. Цикл выполняется фотосинтезирующими растениями: аэробного дыхания а также хемосинтез, описанные в других ответах, используются другими типами форм жизни.
Источник
☰
Фотосинтез – это преобразование энергии света в энергию химических связей органических соединений.
Фотосинтез характерен для растений, в том числе всех водорослей, ряда прокариот, в том числе цианобактерий, некоторых одноклеточных эукариот.
В большинстве случаев при фотосинтезе в качестве побочного продукта образуется кислород (O2). Однако это не всегда так, поскольку существует несколько разных путей фотосинтеза. В случае выделения кислорода его источником является вода, от которой на нужды фотосинтеза отщепляются атомы водорода.
Фотосинтез состоит из множества реакций, в которых участвуют различные пигменты, ферменты, коферменты и др. Основными пигментами являются хлорофиллы, кроме них – каротиноиды и фикобилины.
В природе распространены два пути фотосинтеза растений: C3 и С4. У других организмов есть своя специфика реакций. Все, что объединяет эти разные процессы под термином «фотосинтез», – во всех них в общей сложности происходит преобразование энергии фотонов в химическую связь. Для сравнения: при хемосинтезе происходит преобразование энергии химической связи одних соединений (неорганических) в другие – органические.
Выделяют две фазы фотосинтеза – световую и темновую. Первая зависит от светового излучения (hν), которое необходимо для протекания реакций. Темновая фаза является светонезависимой.
У растений фотосинтез протекает в хлоропластах. В результате всех реакций образуются первичные органические вещества, из которых потом синтезируются углеводы, аминокислоты, жирные кислоты и др. Обычно суммарную реакцию фотосинтеза пишут в отношении глюкозы – наиболее распространенного продукта фотосинтеза:
6CO2 + 6H2O → C6H12O6 + 6O2
Атомы кислорода, входящие в молекулу O2, берутся не из углекислого газа, а из воды. Углекислый газ – источник углерода, что более важно. Благодаря его связыванию у растений появляется возможность синтеза органики.
Представленная выше химическая реакция есть обобщенная и суммарная. Она далека от сути процесса. Так глюкоза не образуется из шести отдельных молекул углекислоты. Связывание CO2 происходит по одной молекуле, которая сначала присоединяется к уже существующему пятиуглеродному сахару.
Для прокариот характерны свои особенности фотосинтеза. Так у бактерий главный пигмент – бактериохлорофилл, и не выделяется кислород, так как водород берется не из воды, а часто из сероводорода или других веществ. У сине-зеленых водорослей основным пигментом является хлорофилл, и при фотосинтезе выделяется кислород.
Световая фаза фотосинтеза
В световой фазе фотосинтеза происходит синтез АТФ и НАДФ·H2 за счет лучистой энергии. Это происходит на тилакоидах хлоропластов, где пигменты и ферменты образуют сложные комплексы для функционирования электрохимических цепей, по которым передаются электроны и отчасти протоны водорода.
Электроны в конечном итоге оказываются у кофермента НАДФ, который, заряжаясь отрицательно, притягивает к себе часть протонов и превращается в НАДФ·H2. Также накопление протонов по одну сторону тилакоидной мембраны и электронов по другую создает электрохимический градиент, потенциал которого используется ферментом АТФ-синтетазой для синтеза АТФ из АДФ и фосфорной кислоты.
Главными пигментами фотосинтеза являются различные хлорофиллы. Их молекулы улавливают излучение определенных, отчасти разных спектров света. При этом некоторые электроны молекул хлорофилла переходят на более высокий энергетический уровень. Это неустойчивое состояние, и по-идее электроны путем того же излучения должны отдать в пространство полученную из вне энергию и вернуться на прежний уровень. Однако в фотосинтезирующих клетках возбужденные электроны захватываются акцепторами и с постепенным уменьшением своей энергии передаются по цепи переносчиков.
На мембранах тилакоидов существуют два типа фотосистем, испускающих электроны при действия света. Фотосистемы представляют собой сложный комплекс большей частью хлорофильных пигментов с реакционным центром, от которого и отрываются электроны. В фотосистеме солнечный свет ловит множество молекул, но вся энергия собирается в реакционном центре.
Электроны фотосистемы I, пройдя по цепи переносчиков, восстанавливают НАДФ.
Энергия электронов, оторвавшихся от фотосистемы II, используется для синтеза АТФ. А сами электроны фотосистемы II заполняют электронные дырки фотосистемы I.
Дырки второй фотосистемы заполняются электронами, образующимися в результате фотолиза воды. Фотолиз также происходит при участии света и заключается в разложении H2O на протоны, электроны и кислород. Именно в результате фотолиза воды образуется свободный кислород. Протоны участвуют в создании электрохимического градиента и восстановлении НАДФ. Электроны получает хлорофилл фотосистемы II.
Примерное суммарное уравнение световой фазы фотосинтеза:
H2O + НАДФ + 2АДФ + 2Ф → ½O2 + НАДФ · H2 + 2АТФ
Циклический транспорт электронов
Выше описана так называемый нецикличная световая фаза фотосинтеза. Есть еще циклический транспорт электронов, когда восстановления НАДФ не происходит. При этом электроны от фотосистемы I уходят на цепь переносчиков, где идет синтез АТФ. То есть эта электрон-транспортная цепь получает электроны из фотосистемы I, а не II. Первая фотосистема как бы реализует цикл: в нее возвращаются ей же испускаемые электроны. По дороге они тратят часть своей энергии на синтез АТФ.
Фотофосфорилирование и окислительное фосфорилирование
Световую фазу фотосинтеза можно сравнить с этапом клеточного дыхания – окислительным фосфорилированием, которое протекает на кристах митохондрий. Там тоже происходит синтез АТФ за счет передачи электронов и протонов по цепи переносчиков. Однако в случае фотосинтеза энергия запасается в АТФ не для нужд клетки, а в основном для потребностей темновой фазы фотосинтеза. И если при дыхании первоначальным источником энергии служат органические вещества, то при фотосинтезе – солнечный свет. Синтез АТФ при фотосинтезе называется фотофосфорилированием, а не окислительным фосфорилированием.
Темновая фаза фотосинтеза
Впервые темновую фазу фотосинтеза подробно изучили Кальвин, Бенсон, Бэссем. Открытый ими цикл реакций в последствии был назван циклом Кальвина, или C3-фотосинтезом. У определенных групп растений наблюдается видоизмененный путь фотосинтеза – C4, также называемый циклом Хэтча-Слэка.
В темновых реакциях фотосинтеза происходит фиксация CO2. Темновая фаза протекает в строме хлоропласта.
Восстановление CO2 происходит за счет энергии АТФ и восстановительной силы НАДФ·H2, образующихся в световых реакциях. Без них фиксации углерода не происходит. Поэтому хотя темновая фаза напрямую не зависит от света, но обычно также протекает на свету.
Цикл Кальвина
Первая реакция темновой фазы – присоединение CO2 (карбоксилирование) к 1,5-рибулезобифосфату (рибулезо-1,5-дифосфат) – РиБФ. Последний представляет собой дважды фосфорилированную рибозу. Данную реакцию катализирует фермент рибулезо-1,5-дифосфаткарбоксилаза, также называемый рубиско.
В результате карбоксилирования образуется неустойчивое шестиуглеродное соединение, которое в результате гидролиза распадается на две трехуглеродные молекулы фосфоглицериновой кислоты (ФГК) – первый продукт фотосинтеза. ФГК также называют фосфоглицератом.
РиБФ + CO2 + H2O → 2ФГК
ФГК содержит три атома углерода, один из которых входит в состав кислотной карбоксильной группы (-COOH):
Из ФГК образуется трехуглеродный сахар (глицеральдегидфосфат) триозофосфат (ТФ), включающий уже альдегидную группу (-CHO):
ФГК (3-кислота) → ТФ (3-сахар)
На данную реакцию затрачивается энергия АТФ и восстановительная сила НАДФ · H2. ТФ – первый углевод фотосинтеза.
После этого большая часть триозофосфата затрачивается на регенерацию рибулозобифосфата (РиБФ), который снова используется для связывания CO2. Регенерация включает в себя ряд идущих с затратой АТФ реакций, в которых участвуют сахарофосфаты с количеством атомов углерода от 3 до 7.
В таком круговороте РиБФ и заключается цикл Кальвина.
Из цикла Кальвина выходит меньшая часть образовавшегося в нем ТФ. В перерасчете на 6 связанных молекул углекислого газа выход составляет 2 молекулы триозофосфата. Суммарная реакция цикла с входными и выходными продуктами:
6CO2 + 6H2O → 2ТФ
При этом в связывании участвую 6 молекул РиБФ и образуется 12 молекул ФГК, которые превращаются в 12 ТФ, из которых 10 молекул остаются в цикле и преобразуются в 6 молекул РиБФ. Поскольку ТФ – это трехуглеродный сахар, а РиБФ – пятиуглеродный, то в отношении атомов углерода имеем: 10 * 3 = 6 * 5. Количество атомов углерода, обеспечивающих цикл не изменяется, весь необходимый РиБФ регенерируется. А шесть вошедших в цикл молекул углекислоты затрачиваются на образование двух выходящих из цикла молекул триозофосфата.
На цикл Кальвина в расчете на 6 связанных молекул CO2 затрачивается 18 молекул АТФ и 12 молекул НАДФ · H2, которые были синтезированы в реакциях световой фазы фотосинтеза.
Расчет ведется на две выходящие из цикла молекулы триозофосфата, так как образующаяся в последствии молекула глюкозы, включает 6 атомов углерода.
Триозофосфат (ТФ) – конечный продукт цикла Кальвина, но его сложно назвать конечным продуктом фотосинтеза, так как он почти не накапливается, а, вступая в реакции с другими веществами, превращается в глюкозу, сахарозу, крахмал, жиры, жирные кислоты, аминокислоты. Кроме ТФ важную роль играет ФГК. Однако подобные реакции происходят не только у фотосинтезирующих организмов. В этом смысле темновая фаза фотосинтеза – это то же самое, что цикл Кальвина.
Из ФГК путем ступенчатого ферментативного катализа образуется шестиуглеродный сахар фруктозо-6-фосфат, который превращается в глюкозу. В растениях глюкоза может полимеризоваться в крахмал и целлюлозу. Синтез углеводов похож на процесс обратный гликолизу.
Фотодыхание
Кислород подавляет фотосинтез. Чем больше O2 в окружающей среде, тем менее эффективен процесс связывания CO2. Дело в том, что фермент рибулозобифосфат-карбоксилаза (рубиско) может реагировать не только с углекислым газом, но и кислородом. В этом случае темновые реакции несколько иные.
Содержащая пять атомов углерода молекула рибулозобифосфата реагирует уже не с CO2, а с O2. В результате чего образуются по одной молекуле фосфогликолата (C2) и фосфоглицериновой кислоты (C3), а не две ФГК как обычно.
Фосфогликолат – это фосфогликолевая кислота. От нее сразу отщепляется фосфатная группа, и она превращается в гликолевую кислоту (гликолат). Для его «утилизации» снова нужен кислород. Поэтому чем больше в атмосфере кислорода, тем больше он будет стимулировать фотодыхание и тем больше растению будет требоваться кислорода, чтобы избавиться от продуктов реакции.
Фотодыхание – это зависимое от света потребление кислорода и выделение углекислого газа. То есть обмен газов происходит как при дыхании, но протекает в хлоропластах и зависит от светового излучения. От света фотодыхание зависит лишь потому, что рибулозобифосфат образуется только при фотосинтезе.
При фотодыхании происходит возврат атомов углерода из гликолата в цикл Кальвина в виде фосфоглицериновой кислоты (фосфоглицерата).
2 Гликолат (С2) → 2 Глиоксилат (С2) →2 Глицин (C2) – CO2 → Серин (C3) →Гидроксипируват (C3) → Глицерат (C3) → ФГК (C3)
Как видно, возврат происходит не полный, так как один атом углерода теряется при превращении двух молекул глицина в одну молекулу аминокислоты серина, при этом выделяется углекислый газ.
Кислород необходим на стадиях превращения гликолата в глиоксилат и глицина в серин.
Превращения гликолата в глиоксилат, а затем в глицин происходят в пероксисомах, синтез серина в митохондриях. Серин снова поступает в пероксисомы, где из него сначала получается гидрооксипируват, а затем глицерат. Глицерат уже поступает в хлоропласты, где из него синтезируется ФГК.
Фотодыхание характерно в основном для растений с C3-типом фотосинтеза. Его можно считать вредным, так как энергия бесполезно тратится на превращения гликолата в ФГК. Видимо фотодыхание возникло из-за того, что древние растения были не готовы к большому количеству кислорода в атмосфере. Изначально их эволюция шла в атмосфере богатой углекислым газом, и именно он в основном захватывал реакционный центр фермента рубиско.
C4-фотосинтез, или цикл Хэтча-Слэка
Если при C3-фотосинтезе первым продуктом темновой фазы является фосфоглицериновая кислота, включающая три атома углерода, то при C4-пути первыми продуктами являются кислоты, содержащие четыре атома углерода: яблочная, щавелевоуксусная, аспарагиновая.
С4-фотосинтез наблюдается у многих тропических растений, например, сахарного тростника, кукурузы.
С4-растения эффективнее поглощают оксид углерода, у них почти не выражено фотодыхание.
Растения, в которых темновая фаза фотосинтеза протекает по C4-пути, имеют особое строение листа. В нем проводящие пучки окружены двойным слоем клеток. Внутренний слой – обкладка проводящего пучка. Наружный слой – клетки мезофилла. Хлоропласты клеток слоев отличаются друг от друга.
Для мезофильных хлоропласт характерны крупные граны, высокая активность фотосистем, отсутствие фермента РиБФ-карбоксилазы (рубиско) и крахмала. То есть хлоропласты этих клеток адаптированы преимущественно для световой фазы фотосинтеза.
В хлоропластах клеток проводящего пучка граны почти не развиты, зато высока концентрация РиБФ-карбоксилазы. Эти хлоропласты адаптированы для темновой фазы фотосинтеза.
Углекислый газ сначала попадает в клетки мезофилла, связывается с органическими кислотами, в таком виде транспортируется в клетки обкладки, освобождается и далее связывается также, как у C3-растений. То есть C4-путь дополняет, а не заменяет C3.
В мезофилле CO2 присоединяется к фосфоенолпирувату (ФЕП) с образованием оксалоацетата (кислота), включающего четыре атома углерода:
Реакция происходит при участии фермента ФЕП-карбоксилазы, обладающего более высоким сродством к CO2, чем рубиско. К тому же ФЕП-карбоксилаза не взаимодействует с кислородом, а значит не затрачивается на фотодыхание. Таким образом, преимущество C4-фотосинтеза заключается в более эффективной фиксации углекислоты, увеличению ее концентрации в клетках обкладки и следовательно более эффективной работе РиБФ-карбоксилазы, которая почти не расходуется на фотодыхание.
Оксалоацетат превращается в 4-х углеродную дикарбоновую кислоту (малат или аспартат), которая транспортируется в хлоропласты клеток обкладки проводящих пучков. Здесь кислота декарбоксилируется (отнятие CO2), окисляется (отнятие водорода) и превращается в пируват. Водород восстанавливает НАДФ. Пируват возвращается в мезофилл, где из него регенерируется ФЕП с затратой АТФ.
Оторванный CO2 в хлоропластах клеток обкладки уходит на обычный C3-путь темновой фазы фотосинтеза, т. е. в цикл Кальвина.
Фотосинтез по пути Хэтча-Слэка требует больше энергозатрат.
Считается, что C4-путь возник в эволюции позже C3 и во многом является приспособлением против фотодыхания.
Источник