Цикл for в программировании

Здравствуйте, дорогие читатели! Циклы, являются неотъемлемой частью любого языка программирования. Они позволяют нам выполнять огромное количество рутинных операций, которые делать вручную невероятно сложно. В этом и заключается главная «прелесть» циклов.
Существует три вида циклов в C++:
- for
- while
- do while
В данной статье речь пойдет о цикле for.
Как работает цикл for?
Цикл for последовательно выполняет одинаковые действия, определенное количество раз. Например, тысячу раз будет выводить сообщение Hello, world!.
Давайте рассмотрим структуру цикла for:
for (<объявление счетчика>; <условие выполнения цикла>; <шаг цикла>) { <тело цикла> } |
Теперь давайте поподробнее рассмотрим синтаксис цикла for:
- <объявление счетчика> — здесь нужно создать переменную (счетчик цикла) и задать ей первоначальное значение. Эта команда выполняется до запуска цикла;
- <условие выполнения цикла> — оно похоже на условие оператора if. Нам нужно указать логическое выражение, при истинности которого, цикл будет работать;
- <шаг цикла> — данная инструкция будет выполняться в конце каждой итерации, переводя счетчик цикла на новое значение;
- <тело цикла> — здесь мы указываем код, который будет выполнятся на каждой итерации цикла.
Возможно у вас остались вопросы, поэтому давайте разберем одну простенькую программу.
Пример работы цикла for
Следующая программа находит произведение цифр от 1 до N (факториал):
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | #include <iostream> #include <stdlib.h> using namespace std; int main() { int n; // создаем переменную n cout << “N = “; // выводим сообщение cin >> n; // считываем значение int res = 1; // создаем переменную res // в ней мы будем хранить результат работы цикла for (int i = 1; i <= n; i++) // цикл for res *= i; // умножаем на i полученное ранее значение cout << “RES = ” << res << endl; // выводим результат работы программы return 0; } |
Вот один из возможных результатов работы данной программы:
N = 7
RES = 5040
Process returned 0 (0x0) execution time : 2.723 s
Press any key to continue.
Теперь давайте приступи к разбору кода:
- Строка 6: мы создаем переменную n. В будущем ее мы будем использовать в условии выполнения цикла.
- Строка 10: нам нужна переменная в которой будет хранится результат работы цикла. Поэтому мы создаем переменную res.
- Строка 11: вот мы и добрались до цикла for. Здесь давайте разберемся поподробнее:
- в качестве счетчика выступает переменная i. Мы сразу ей задаем значение 1 (собственно можно было начать и с двух, поскольку умножение на 1 не имеет смысла);
- условием выполнения цикла является нестрогое неравенство. Цикл будет выполнятся до тех пор, пока i меньше или равно n;
- после каждой итерации мы увеличиваем значение счетчика на единицу (операция инкремента). Это равносильно следующей записи: i = i + 1.
- Строка 14: выводим результат работы программы на экран пользователя.
Данный пример довольно наглядно демонстрирует возможности циклов. Однако давайте рассмотрим еще одну из вариаций цикла for, которая наглядно демонстрирует его гибкость:
int a, b; for (a = 140, b = 1742; a != b; ) { if (a > b) a -= b; else b -= a; } cout << a; |
Данная программа — это реализация алгоритма нахождения НОД. Давайте не будем разбирать его работу, а просто рассмотрим особенности данного кода:
- в качестве счетчика можно указывать сразу несколько переменных. Также они не обязательно должны быть объявлены непосредственно в самом блоке;
- любой из блоков (их 3) может вовсе отсутствовать. Вот хороший пример работы бесконечного цикла:
Данный код будет выполняться до тех пор, пока пользователь принудительно не завершит работу программы.
Довольно часто вам придется пользоваться лишь одной вариацией цикла for. Однако если вам придется выполнять специфические задачи, то вы сможете подстроить цикл for под свои «хотелки».
Возможные ошибки
Цикл — это одновременно очень удобный инструмент для работы, но в тоже время он таит не мало скрытых угроз. Неопытные кодеры могут совершать ошибки, которые не просто выявить, поскольку программа успешно компилируется и начинает работу.
Сегфолт
У данной ошибки довольно много причин. Подробнее о ней можете почитать на Википедии. В случае работы с циклами она может возникнуть следующим образом:
for (int i; i < 10; i++) { <ваш код> } |
Вы могли заметь, что здесь переменной i не задали значение. Изначально переменная содержит «мусор» (можете вывести такой мусор на экран для того, чтобы понять о чем я говорю). Естественно к мусору прибавлять ничего нельзя — программа вылетит.
Постарайтесь выработать привычку всегда обнулять созданные переменные. Это избавит вас от огромного количества проблем при написании собственных программ.
Некоторые компиляторы обнуляют переменные при их создании. Например, это делает компилятор gcc.
Бесконечный цикл
Данная ошибка часто возникает из-за неправильного условия или изменение значения счетчика внутри цикла.
Давайте посмотрим на простой пример:
for (int i = 0; i < 10; i++) { r += –i; } |
Данный цикл никогда не завершится, поскольку внутри значение i уменьшается на единицу, а после опять увеличивается. Таким образов условие i < 10 всегда будет истинным.
Тест на тему «Цикл for в C++»
Попробуйте пройти небольшой тест, чтобы проверить свои знания по данной теме.
В качестве домашнего задания, напишите программу, которая будет находить сумму чисел от 1 до N. Удачи!
Источник
Сегодня необычный для меня формат статьи: я скорее задаю вопрос залу, нежели делюсь готовым рецептом. Впрочем, для инициирования дискуссии рецепт тоже предлагаю. Итак, сегодня мы поговорим о чувстве прекрасного.
Я довольно давно пишу код, и так вышло, что практически всегда на C++. Даже и не могу прикинуть, сколько раз я написал подобную конструкцию:
for (int i=0; i<size; i++) {
[…]
}
Хотя почему не могу, очень даже могу:
find . ( -name *.h -o -name *.cpp ) -exec grep -H “for (” {} ; | wc -l
43641
Наш текущий проект содержит 43 тысячи циклов. Проект пилю не я один, но команда маленькая и проект у меня не первый (и, надеюсь, не последний), так что в качестве грубой оценки пойдёт. А насколько такая запись цикла for хороша? Ведь на самом деле, важно даже не то количество раз, когда я цикл написал, а то количество раз, когда я цикл прочитал (см. отладка и code review). А тут речь очевидно идёт уже о миллионах.
На КПДВ узел под названием «совершенная петля» (perfection loop).
Так каков он, совершенный цикл?
Мы пишем много кода для математического моделирования; код довольно плотный, с огромным количеством целых чисел, которые являются индексами ячеек, функций и прочей лабуды. Чтобы был понятен масштаб проблемы, давайте я просто приведу крохотный кусочек кода из нашего проекта:
for (int iter=0; iter<nb_iter; iter++) { // some iterative computation
for (int c=0; c<mesh.cells.nb(); c++) // loop through all tetrahedra
for (int lv0=0; lv0<4; lv0++) // for every pair of
for (int lv1 = lv0+1; lv1<4; lv1++) // vertices in the tet
for (int d=0; d<3; d++) { // do stuff for each of 3 dimensions
nlRowScaling(weight);
nlBegin(NL_ROW);
nlCoefficient(mesh.cells.vertex(c, lv0)*3 + d, 1);
nlCoefficient(mesh.cells.vertex(c, lv1)*3 + d, -1);
nlEnd(NL_ROW);
}
[…]
}
У нас есть некая область, разбитая на тетраэдры, и мы на ней моделируем некий процесс. Для каждой итерации процесса мы проходимся по всем тетраэдрам сетки, затем по всем вершинам каждого тетраэдра, бла-бла-бла, и всё венчает цикл по всем трём измерениям нашего окружающего мира.
Мы обязаны иметь дело с кучей вложенных циклов; вышеприведённые пять вложенных далеко не предел. Мы уже довольно давно (лет пятнадцать как) пришли к выводу, что стандартный for (int i=0; i<size; i++) — это очень громоздкая конструкция: те самые пять вложенных заголовков for превращаются в совершенно нечитаемую кашу, и даже подсветка синтаксиса не спасает.
Когда мы читаем стандартный for(;;), мы должны на каждой строчке обратить внимание на три вещи: на инициализацию, на условие выхода и собственно на инкремент. Но ведь это совершеннейший оверкилл для тех случаев, когда нам нужно пройтись от 0 до size-1, а это подавляющее большинство всех циклов. Скажите, как часто вам приходится писать обратный цикл или итерацию с другими границами? Как мне кажется, один раз из десяти — это ещё щедрая оценка.
До появления c++11 мы в итоге пришли к страшной вещи, а именно ввели в самый верхний заголовок вот такой дефайн:
#define FOR(I,UPPERBND) for(int I = 0; I<int(UPPERBND); ++I)
И тогда вышеприведённый кусок кода превращается из тыквы в кабачок:
FOR(iter, nb_iter) {
FOR(c, mesh.cells.nb())
FOR(lv0, 4)
for (int lv1 = lv0+1; lv1<4; lv1++)
FOR(d, 3) {
nlRowScaling(weight);
nlBegin(NL_ROW);
nlCoefficient(mesh.cells.vertex(c, lv0)*3 + d, 1);
nlCoefficient(mesh.cells.vertex(c, lv1)*3 + d, -1);
nlEnd(NL_ROW);
}
[…]
}
Польза такой трансформации в том, что когда я встречаю for (;;), я знаю, что мне нужно насторожиться и внимательно смотреть на все три места (инициализацию, условие, инкремент). В то время как если я вижу FOR(,) то это совершенно стандартный пробег от 0 до n-1 без каких-либо тонкостей. Я совершенно не предлагаю пользоваться вышеприведённым дефайном, но точно знаю, что для нашей команды он сберёг много ресурсов мозга, поскольку мы кода гораздо больше читаем (см. отладка), нежели пишем (как, наверное, и все программисты).
То есть, вопрос, которым я задаюсь, звучит так: “Как выглядит цикл, имеющий минимальную когнитивную нагрузку при чтении кода?“
А как дела обстоят у соседей? Вы знаете, местами довольно недурно. Например, в лагере питонистов стандартный цикл выглядит следующим образом:
for i in range(n):
print(i)
Что любопытно, до третьего питона range() создавал в памяти массив индексов, и проходился по нему. И со времён c++11 мы вполне можем делать точно так же!
#include <iostream>
int main() {
int range[] = {0,1,2,3,4,5};
for (int i : range) {
std::cerr << i;
}
}
Разумеется, явно создавать в памяти массив индексов это несерьёзно, и с третьей версии в питоне это тоже поняли. Но и в C++ мы можем сделать не хуже!
Давайте посмотрим на следующую функцию range(int n):
#include <iostream>
constexpr auto range(int n) {
struct iterator {
int i;
void operator++() { ++i; }
bool operator!=(const iterator& rhs) const { return i != rhs.i; }
const int &operator*() const { return i; }
};
struct wrapper {
int n;
auto begin() { return iterator{0}; }
auto end() { return iterator{n}; }
};
return wrapper{n};
}
int main() {
for (int i: range(13)) {
std::cerr << i;
}
return 0;
}
Пожалуйста, не начинайте int vs size_t, разговор не об этом. Если скомпилировать этот код при помощи gcc 10.2 с флагами компиляции -std=c++17 -Wall -Wextra -pedantic -O1, то мы получим следующий ассемблерный код (проверьте тут):
[…]
.L2:
mov esi, ebx
mov edi, OFFSET FLAT:_ZSt4cerr
call std::basic_ostream<char, std::char_traits<char> >::operator<<(int)
add ebx, 1
cmp ebx, 13
jne .L2
[…]
То есть, компилятор начисто убрал все эти обёртки и оставил голый инкремент, ровно как если бы мы написали обычный for (int i=0; i<13; i++).
Лично мне кажется, что for (int i: range(n)) справляется с подчёркиванием обычности цикла чуть хуже, нежели FOR(,), но тоже вполне достойно, и за это не нужно платить дополнительными тактами процессора.
Range for в c++11 нанёс большую пользу. Давайте скажем, что у меня есть массив трёхмерных точек, и мне нужно распечатать икс координаты каждой точки, это можно сделать следующим образом:
#include <vector>
#include <iostream>
struct vec3 { double x,y,z; };
int main() {
std::vector<vec3> points = {{6,5,8},{1,2,3},{7,3,7}};
for (vec3 &p: points) {
std::cerr << p.x;
}
return 0;
}
for (vec3 &p: points) это прекрасная конструкция, никаких костылей, сразу из стандарта языка. Но что если у меня каждая точка из массива имеет цвет, вес или вкус? Это можно представить ещё одним массивом того же размера, что и массив точек. И тогда для доступа к атрибуту мне всё же понадобится индекс, который мы можем сгенерировать, например, вот таким образом:
std::vector<vec3> points = {{6,5,8},{1,2,3},{7,3,7}};
std::vector<double> weights = {4,6,9};
int i = 0;
for (vec3 &p: points) {
std::cerr << p.x << weights[i++];
}
Для этого кода компилятор генерирует следующий ассемблер:
asm
movsd xmm0, QWORD PTR [r13+0]
mov edi, OFFSET FLAT:_ZSt4cerr
call std::basic_ostream<char, std::char_traits<char> >& std::basic_ostream<char, std::char_traits<char> >::_M_insert<double>(double)
movsd xmm0, QWORD PTR [rbp+0]
mov rdi, rax
call std::basic_ostream<char, std::char_traits<char> >& std::basic_ostream<char, std::char_traits<char> >::_M_insert<double>(double)
add rbp, 8
add r13, 24
cmp r14, rbp
jne .L2
В принципе, имеет право на жизнь, но гулять так гулять, давайте снимем с программиста заботу о создании параллельного индекса, ровно как сделали в питоне, благо стандарт c++17 имеет structural binding!
Итак, можно сделать следующим образом:
#include <vector>
#include <iostream>
#include “range.h”
struct vec3 {
double x,y,z;
};
int main() {
std::vector<vec3> points = {{6,5,8},{1,2,3},{7,3,7}};
std::vector<double> weights = {4,6,9};
for (auto [i, p]: enumerate(points)) {
std::cerr << p.x << weights[i];
}
return 0;
}
Функция enumerate() определена в следующем заголовочном файле:
range.h
#define __RANGE_H__
#include <tuple>
#include <utility>
#include <iterator>
constexpr auto range(int n) {
struct iterator {
int i;
void operator++() { ++i; }
bool operator!=(const iterator& rhs) const { return i != rhs.i; }
const int &operator*() const { return i; }
};
struct wrapper {
int n;
auto begin() { return iterator{0}; }
auto end() { return iterator{n}; }
};
return wrapper{n};
}
template <typename T> constexpr auto enumerate(T && iterable) {
struct iterator {
int i;
typedef decltype(std::begin(std::declval<T>())) iterator_type;
iterator_type iter;
bool operator!=(const iterator& rhs) const { return iter != rhs.iter; }
void operator++() { ++i; ++iter; }
auto operator*() const { return std::tie(i, *iter); }
};
struct wrapper {
T iterable;
auto begin() { return iterator{0, std::begin(iterable)}; }
auto end() { return iterator{0, std::end (iterable)}; }
};
return wrapper{std::forward<T>(iterable)};
}
#endif // __RANGE_H__
При компиляции с флагами -std=c++17 -Wall -Wextra -pedantic -O2 мы получим следующий ассемблерный код (проверьте тут):
ASM
movsd xmm0, QWORD PTR [rbx]
mov edi, OFFSET FLAT:_ZSt4cerr
call std::basic_ostream<char, std::char_traits<char> >& std::basic_ostream<char, std::char_traits<char> >::_M_insert<double>(double)
mov rdi, rax
mov rax, QWORD PTR [rsp+32]
movsd xmm0, QWORD PTR [rax+rbp]
call std::basic_ostream<char, std::char_traits<char> >& std::basic_ostream<char, std::char_traits<char> >::_M_insert<double>(double)
add rbx, 24
add rbp, 8
cmp r12, rbx
jne .L14
И снова компилятор начисто убрал обёртку (правда, для этого пришлось поднять уровень оптимизации с -O1 на -O2).
Кстати, в c++20 появился std::ranges, что ещё больше упрощает написание такой функции, но я пока не готов переходить на этот стандарт.
На ваш взгляд, каким должен быть совершенный цикл в 2020м году? Научите меня!
Если вы ещё не задавались этим вопросом, то скопируйте к себе в пет-проект заголовочный файл range.h и попробуйте его поиспользовать хотя бы несколько дней.
Источник
Обновл. 15 Сен 2020 |
Безусловно, наиболее используемым циклом в языке C++ является цикл for.
Цикл for
Цикл for в языке С++ идеален, когда известно необходимое количество итераций. Выглядит он следующим образом:
for (объявление переменных; условие; инкремент/декремент счетчика)
тело цикла;
Или, преобразуя for в эквивалентный цикл while:
{ // обратите внимание, цикл находится в блоке
объявление переменных;
while (условие)
{
тело цикла;
инкремент/декремент счетчика;
}
} // переменные, объявленные внутри цикла, выходят из области видимости здесь
Переменные, определенные внутри цикла for, имеют специальный тип области видимости: область видимости цикла. Такие переменные существуют только внутри цикла и недоступны за его пределами.
Выполнение цикла for
Цикл for в C++ выполняется в 3 шага:
Шаг №1: Объявление переменных. Как правило, здесь выполняется определение и инициализация счетчиков цикла, а точнее — одного счетчика цикла. Эта часть выполняется только один раз, когда цикл выполняется впервые.
Шаг №2: Условие. Если оно равно false, то цикл немедленно завершает свое выполнение. Если же условие равно true, то выполняется тело цикла.
Шаг №3: Инкремент/декремент счетчика цикла. Переменная увеличивается или уменьшается на единицу. После этого цикл возвращается к шагу №2.
Рассмотрим пример цикла for и разберемся детально, как он работает:
#include <iostream> int main() { for (int count = 0; count < 10; ++count) std::cout << count << ” “; return 0; } |
Сначала мы объявляем переменную count и присваиваем ей значение 0. Далее проверяется условие count < 10, а так как count равен 0, то условие 0 < 10 имеет значение true. Следовательно, выполняется тело цикла, в котором мы выводим в консоль переменную count (т.е. значение 0).
Затем выполняется выражение ++count, т.е. инкремент переменной. Затем цикл снова возвращается к проверке условия. Условие 1 < 10 имеет значение true, поэтому тело цикла выполняется опять. Выводится 1, а переменная count увеличивается уже до значения 2. Условие 2 < 10 является истинным, поэтому выводится 2, а count увеличивается до 3 и так далее.
В конце концов, count увеличивается до 10, а условие 10 < 10 является ложным, и цикл завершается. Следовательно, результат выполнения программы:
0 1 2 3 4 5 6 7 8 9
Циклы for могут быть несколько сложны для новичков, однако опытные кодеры любят их, так как эти циклы очень компактны и удобны. Для наглядности, давайте преобразуем цикл for, приведенный выше, в эквивалентный цикл while:
#include <iostream> int main() { { // внешние скобки нужны для обеспечения области видимости цикла int count = 0; while (count < 10) { std::cout << count << ” “; ++count; } } return 0; } |
Обратите внимание, внешние фигурные скобки здесь необходимы, так как переменная count выходит из области видимости при завершении цикла.
Еще примеры циклов for
Давайте, используя цикл for, напишем функцию вычисления значений в степени n:
int pow(int base, int exponent) { int total = 1; for (int count=0; count < exponent; ++count) total *= base; return total; } |
Функция возвращает значение base^exponent (число в степени n). base — это число, которое нужно возвести в степень, а exponent — это степень, в которую нужно возвести base.
Если экспонент равен 0, то цикл for выполняется 0 раз, и функция возвращает 1.
Если экспонент равен 1, то цикл for выполняется 1 раз, и функция возвращает 1 * base.
Если экспонент равен 2, то цикл for выполняется 2 раза, и функция возвращает 1 * base * base.
Хотя в большинстве циклов используется инкремент счетчика, мы также можем использовать и декремент счетчика:
#include <iostream> int main() { for (int count = 8; count >= 0; –count) std::cout << count << ” “; return 0; } |
Результат:
8 7 6 5 4 3 2 1 0
Также с каждой новой итерацией мы можем увеличить или уменьшить значение счетчика больше, чем на единицу:
#include <iostream> int main() { for (int count = 9; count >= 0; count -= 2) std::cout << count << ” “; return 0; } |
Результат:
9 7 5 3 1
Ошибка неучтенной единицы
Одна из самых больших проблем с которой приходится сталкиваться начинающим программистам в циклах for (а также и в других типах циклов) — это ошибка на единицу (или «ошибка неучтенной единицы»). Она возникает, когда цикл повторяется на 1 раз больше или на 1 раз меньше нужного количества итераций. Это обычно происходит из-за того, что в условии используется некорректный оператор сравнения (например, > вместо >= или наоборот). Как правило, эти ошибки трудно отследить, так как компилятор не будет жаловаться на них, программа будет работать, но её результаты будут неправильными.
При написании циклов for помните, что цикл будет выполняться до тех пор, пока условие является истинным. Рекомендуется тестировать циклы, используя разные значения для проверки работоспособности цикла. Хорошей практикой является проверять циклы с помощью данных ввода (чисел, символов и прочего), которые заставляют цикл выполниться 0, 1 и 2 раза. Если цикл работает исправно, значит всё ОК.
Правило: Тестируйте свои циклы, используя входные данные, которые заставляют цикл выполниться 0, 1 и 2 раза.
Пропущенные выражения в цикле
Также в циклах можно пропускать одно или сразу все выражения, например:
#include <iostream> int main() { int count = 0; for (; count < 10; ) { std::cout << count << ” “; ++count; } return 0; } |
Результат:
0 1 2 3 4 5 6 7 8 9
Инициализацию счетчика мы прописали вне тела цикла, а инкремент счетчика — внутри тела цикла. В самом операторе for мы указали только условие. Иногда бывают случаи, когда не требуется объявлять счетчик цикла (потому что у нас он уже есть) или увеличивать его (так как мы увеличиваем его каким-то другим способом).
Хоть это и не часто можно наблюдать, но в операторе for можно вообще ничего не указывать. Стоит отметить, что подобное приведет к бесконечному циклу:
for (;;)
тело цикла;
Вышеприведенный пример эквивалентен:
while (true)
тело цикла;
Объявления переменных в цикле for
Хотя в циклах for обычно используется только один счетчик, иногда могут возникать ситуации, когда нужно работать сразу с несколькими переменными. Для этого используется оператор Запятая. Например:
#include <iostream> int main() { int aaa, bbb; for (aaa = 0, bbb = 9; aaa < 10; ++aaa, –bbb) std::cout << aaa << ” ” << bbb << std::endl; return 0; } |
Этот цикл присваивает значения двум ранее объявленным переменным: aaa = 0 и bbb = 9. Только с каждой итерацией переменная aaa увеличивается на единицу, а bbb — уменьшается на единицу.
Результат выполнения программы:
0 9
1 8
2 7
3 6
4 5
5 4
6 3
7 2
8 1
9 0
Примечание: Вышеприведенный цикл можно переписать следующим образом:
#include <iostream> int main() { for (int aaa = 0, bbb = 9; aaa < 10; ++aaa, –bbb) std::cout << aaa << ” ” << bbb << std::endl; return 0; } |
В этом случае запятая в объявлении переменных является частью синтаксиса, а не использованием оператора Запятая. Но эффект идентичен.
Использование циклов for в старых версиях С++
В старых версиях C++ переменные, объявленные в цикле for, не уничтожались при завершении этого цикла. Т.е. у вас могло получиться что-то вроде следующего:
for (int count=0; count < 10; ++count) std::cout << count << ” “; // В старых версиях С++ переменная count здесь не уничтожается std::cout << “n”; std::cout << “I counted to: ” << count << “n”; // поэтому мы можем использовать count даже здесь |
Позднее это было запрещено, но вы все еще можете увидеть подобное в старом коде.
Вложенные циклы for
Подобно другим типам циклов, одни циклы for могут быть вложены в другие циклы for. В следующем примере мы разместили один for внутри другого for:
#include <iostream> int main() { for (char c = ‘a’; c <= ‘e’; ++c) // внешний цикл по буквам { std::cout << c; // сначала выводим букву for (int i = 0; i < 3; ++i) // внутренний цикл по числам std::cout << i; std::cout << ‘n’; } return 0; } |
С одной итерацией внешнего цикла выполняется три итерации внутреннего цикла. Следовательно, результат выполнения программы:
a012
b012
c012
d012
e012
Заключение
Циклы for являются наиболее часто используемыми циклами в языке C++. Несмотря на то, что их синтаксис, как правило, немного запутывает начинающих программистов, вы очень скоро к нему привыкните и ощутите всю мощь и удобство этих циклов.
Тест
Задание №1
Напишите цикл for, который выводит каждое четное число в диапазоне от 0 до 20.
Ответ №1
#include <iostream> int main() { for (int count = 0; count <= 20; count += 2) std::cout << count << std::endl; return 0; } |
Задание №2
Напишите функцию sumTo(), которая принимает целочисленный параметр с именем value и возвращает сумму всех чисел от 1 до значения value.
Например, если значением value является 5, то sumTo(5) должен возвратить 15, исходя из 1 + 2 + 3 + 4 + 5.
Подсказка: Используйте переменную вне тела цикла для хранения суммы чисел, как в примере с функцией pow() в подзаголовке «Еще примеры циклов for».
Ответ №2
int sumTo(int value) { int total(0); for (int count=1; count <= value; ++count) total += count; return total; } |
Задание №3
Что не так со следующим циклом?
// Выводим все числа от 8 до 0 for (unsigned int count=8; count >= 0; –count) cout << count << ” “; |
Ответ №3
Этот цикл for выполняется до тех пор, пока count >= 0. Другими словами, он работает до тех пор, пока переменная count не станет отрицательным числом. Однако, поскольку count является типа unsigned, то эта переменная никогда не сможет быть отрицательной. Следовательно, этот цикл бесконечный! Как правило, рекомендуется избегать использования типов unsigned в цикле, если на это нет веских причин.
Оценить статью:
Загрузка…
Источник