Что такое оксидный цикл
§ 2. МОНОСАХАРИДЫ
Пространственная изомерия
По своей химической природе моносахариды являются альдегидо- или кетоспиртами. Простейший представитель моносахаридов, альдотриоза, – глицериновый альдегид (2,3-дигидроксипропаналь).
Рассматривая строение глицеринового альдегида, можно заметить, что приведенной формуле отвечают два изомера, отличающихся пространственной структурой и представляющих собой зеркальное отражение друг друга:
Изомеры, имеющие одинаковые молекулярные формулы, но отличающиеся расположением атомов в пространстве, называются пространственными, или стереоизомерами. Два стереоизомера, относящихся друг к другу как предмет и несовпадающее с ним зеркальное отражение, называются энантиомерами. Такой вид пространственной изомерии еще называют оптической изомерией.
Существование энантиомеров у глицеринового альдегида обязано наличию в его молекуле хирального атома углерода, т.е. атома, связанного с четырьмя различными заместителями. Если в молекуле присутствует более чем один хиральный центр, то количество оптических изомеров будет определяться по формуле 2n, где n – число хиральных центров. При этом стереоизомеры, не являющиеся энантиомерами, называются диастереомерами.
Для изображения оптических изомеров на плоскости используют проекции Фишера. При построении проекций Фишера следует учитывать, что атомы или группы атомов, лежащие на горизонтальной линии, должны быть направлены к наблюдателю, т.е. выходить из плоскости бумаги. Атомы или группы атомов, лежащие на вертикальной линии и составляющие, как правило, главную цепь, направлены от наблюдателя, т.е. уходят за плоскость бумаги. Для рассматриваемых нами изомеров глицеринового альдегида построение проекций Фишера будет происходить следующим образом:
Глицериновый альдегид принят в качестве стандарта для обозначения оптических изомеров. Для этого один из его изомеров обозначили буквой D, а второй – буквой L.
Пентозы и гексозы
Как уже упоминалось выше, наиболее часто в природе встречаются альдопентозы и альдогексозы. Рассматривая их строение, можно прийти к выводу, что альдопентозы имеют 3 хиральных центра (обозначены звездочками) и, следовательно, состоят их 8 (23) оптических изомеров. Альдогексозы насчитывают 4 хиральных центра и 16 изомеров:
Сравнивая структуру последнего от карбонильной группы хирального центра углевода со структурой D- и L-глицеринового альдегидов, все моносахариды делят на две группы: D- и L-ряды. Важнейшими представителями альдопентоз являются D-рибоза, D-дезоксирибоза, D-ксилоза, L-арабиноза, альдогексоз – D-глюкоза и D-галактоза, а кетогексоз – D-фруктоза. Проекции Фишера названных моносахаридов и их природные источники приведены ниже.
D-рибоза Структурных фрагмент рибонуклеиновой кмслоты, некоторых коферментов, антибиотиков | D-дезоксирибоза Структурный фрагмент дезоксирибонуклеиновой кислоты | D-ксилоза Структурный фрагмент полисахаридов ксиланов, встречающихся в соломе, древесине, шелухе семян, кукурузных початках | L-арабиноза Содержится в древесине хвойных пород, структурный фрагмент растительных гликозидов, полисахаридов арабинанов |
D-глюкоза Содержится в соке растений, крови, структурный фрагмент многих олигосахаридов, полисахаридов | D-галактоза Структурный фрагмент многих дисахаридов, полисахаридов, гликолипидов | D-манноза Содержится в кожуре апельсинов, структурный фрагмент полисахаридов маннанов | D-фруктоза Содержится в спелых фруктах, меде, структурный фрагмент многих олигосахаридов и полисахаридов |
Моносахариды существуют не только в виде открытых (линейных) форм, которые приведены выше, но и в виде циклов. Эти две формы (линейная и циклическая) способны самопроизвольно переходить одна в другую в водных растворах. Динамическое равновесие между структурными изомерами называется таутомерией. Образование циклических форм моносахаридов происходит в результате реакции внутримолекулярного присоединения одной из гидроксильных групп по карбонильной группе. Наиболее устойчивыми являются пяти- и шестичленные циклы. Поэтому при образовании циклических форм углеводов образуются фуранозные (пятичленный) и пиранозные (шестичленный) циклы. Рассмотрим образование циклических форм на примерах глюкозы и рибозы.
Глюкоза при циклизации образует преимущественно пиранозный цикл. Пиранозный цикл состоит из 5 атомов углерода и 1 атома кислорода. При его образовании в присоединении участвует гидроксильная группа пятого (С5) атома углерода.
На месте карбонильной группы возникает гидроксильная группа, которая называется гликозидной, а производные по гликозидной группе углевода – гликозидами. Еще одной пространственной особенностью циклических форм является образование нового хирального центра (атом С1). Возникают два оптических изомера, которые называются аномерами. Аномер, у которого гликозидная группа расположена так же, как и гидроксильная группа, определяющая отношение моносахарида к D- или L-ряду, обозначается буквой , другой аномер – буквой . Строение моносахаридов в циклической форме часто изображают в виде формул Хеуорса. Такое изображение позволяет видеть взаимное расположение атомов водорода и гидроксильных групп относительно плоскости кольца.
Таким образом, в растворе глюкоза существует в виде трех форм, находящихся в подвижном равновесии, соотношение между которыми примерно составляет: 0,025 % – линейная форма, 36 % – – и 64 % – -форма.
Рибоза образует в основном пятичленные фуранозные циклы.
Химические свойства
Химические свойства моносахаридов определяются присутствием в их молекулах карбонильной группы и спиртовых гидроксилов. Рассмотрим на примере глюкозы некоторые реакции моносахаридов.
Как многоатомный спирт, гликоль, раствор глюкозы растворяет осадок гидроксида меди (II) с образованием комплексного соединения.
Альдегидная группа при восстановлении образует спирты. При восстановлении глюкозы образуется шестиатомный спирт сорбит:
Сорбит имеет сладкий вкус и используется в качестве заменителя сахара. Для этой же цели используется и ксилит – продукт восстановления ксилозы.
В реакциях окисления в зависимости от характера окислителя могут образовываться одноосновные (альдоновые) или двухосновные (глюкаровые) кислоты.
Большинство моносахаридов – восстанавливающие сахара. Для них характерны: реакция «серебряного зеркала»
и взаимодействие с Фелинговой жидкостью (восстановление синего Cu(OH)2 до желтого CuOH и далее оранжевого Cu2O).
Повышенной реакционной способностью обладает гликозидная группа циклических форм моносахаридов. Так, при взаимодействии со спиртами образуются простые эфиры – гликозиды. Поскольку в гликозидах отсутствует гликозидный гидроксил, они не способны к таутомерии, т.е. образованию линейной формы, содержащей альдегидную группу. Гликозиды не реагируют с аммиачным раствором оксида серебра и Фелинговой жидкостью. Однако в кислой среде гликозиды легко гидролизуются с образованием исходных соединений:
Под действием ферментных систем микроорганизмов моносахариды могут трансформироваться в различные другие органические соединения. Такие реакции называются брожением. Широко известно спиртовое брожение глюкозы, в результате которого образуется этиловый спирт. Известны и другие виды брожения, например, молочнокислое, маслянокислое, лимоннокислое, глицериновое.
Источник
Упрощенная диаграмма цикла оксида железа
Цикл оксида железа (Fe 3O4/ FeO) – это исходный двухступенчатый термохимический цикл , предложенный для использования для производства водорода . Он основан на восстановлении и последующем окислении ионов железа , в частности, восстановлении и окислении между Fe и Fe. ферриты , или оксид железа, начинаются в форме шпинели и, в зависимости от условий реакции, легирующие металлы и материал носителя образуют либо Wüstites , либо разные шпинели. .
Описание процесса
В термохимическом двухэтапном процессе разделения воды используются два этапа окислительно-восстановительного потенциала . Этапы производства солнечного водорода с помощью двухступенчатого цикла на основе железа:
{M II Fe 2 III O 4 ⟶ M II O + 2 Fe II O + 1 2 O 2 (Восстановление) M II O + 2 Fe II O + H 2 O ⟶ M II Fe 2 III O 4 + H 2 (окисление) { displaystyle { begin {cases} { ce {M ^ {II} Fe2 ^ {III} O4 ->M ^ {II} O + 2Fe ^ {II} O + 1 / 2O2}} & { ce {(Восстановление)}} \ { ce {M ^ {II} O + 2Fe ^ {II} O + H2O ->M ^ { II} Fe2 ^ {III} O4 + H2}} & { ce {(Окисление)}} end {cases}}}
Где M может быть любым числом металлов, часто самим Fe, Co, Ni, Mn, Znили их смесями .
Этап эндотермического восстановления ( 1) осуществляется при высоких температурах, превышающих 1400 ° C, хотя «Герцинит цикл» может работать при температурах до 1200 ° C. Этап настройки (2) происходит при более низкой температуре ~ 1000 ° C, что приводит к образованию исходного ферритового материала в дополнение к газообразному водороду. Температурный уровень достигается за счет использования геотермального тепла от магмы или солнечной энергетической башни и набора гелиостатов для сбора солнечной тепловой энергии .
Цикл герцинита
Как и традиционный цикл оксида железа, герцинит основан на окислении и восстановлении атомов железа. Однако в отличие от традиционного цикла ферритный материал реагирует со вторым оксидом металла, оксидом алюминия , а не просто разлагается. Реакции протекают через следующие две реакции:
{M II Fe 2 III O 4 + 3 Al 2 O 3 ⟶ M II Al 2 III O 4 + 2 Fe II Al 2 III O 4 + 1 2 O 2 ( Восстановление) M II Al 2 III O 4 + 2 Fe II Al 2 III O 4 + H 2 O ⟶ M II Fe 2 III O 4 + 3 Al 2 O 3 + H 2 (окисление) { displaystyle { begin {cases } { ce {M ^ {II} Fe2 ^ {III} O4 + 3Al2O3 ->M ^ {II} Al2 ^ {III} O4 + 2Fe ^ {II} Al2 ^ {III} O4 + 1 / 2O2}} & { ce {(Восстановление)}} \ { ce {M ^ {II} Al2 ^ {III} O4 + 2Fe ^ {II} Al2 ^ {III} O4 + H2O ->M ^ {II} Fe2 ^ { III} O4 + 3Al2O3 + H2}} & { ce {(Окисление)}} end {cases}}
Стадия восстановления герцинитовой реакции происходит при температуре на ~ 200 ° C ниже температуры традиционный цикл разделения воды ( 1200 ° С). Это приводит к меньшим потерям на излучение, которые масштабируются по температуре в четвертой степени.
Преимущества и недостатки
Преимущества ферритовых циклов: они имеют более низкие температуры восстановления, чем другие двухступенчатые системы, не образуются металлические газы, высокая удельная H 2 производственная мощность, нетоксичность используемых элементов и обилие составляющих элементов.
Недостатками ферритных циклов являются: одинаковая температура восстановления и плавления шпинелей (за исключением герцинитового цикла, поскольку алюминаты имеют очень высокие температуры плавления) и медленные скорости окисления или расщепление воды. , реакция.
См. Также
- Цикл оксид церия (IV)-оксид церия (III)
- Цикл медь-хлор
- Цикл гибридной серы
- Гидрозоль-2
- Серно-йодный цикл
- Цинк цинк-оксидный цикл
Ссылки
Внешние ссылки
- Солнечный водород из термохимических циклов на основе оксида железа
Источник
Моносахариды – это самые простые углеводы, состоящие из одного звена. Обычно это твердые сладкие вещества, хорошо растворимые в воде, хуже – в спиртах и практически не вступающие в реакцию с эфиром.
Общая характеристика
Название «моносахариды» с греческого переводится как «одиночный сахар». Эти простые углеводы состоят из одного элемента и не могут быть разбиты на более мелкие блоки. Моносахариды являют собой самую простую форму углеводов, но они могут объединяться, образовывая более сложные соединения. Например, 2 моносахарида создают дисахариды, соединение от 3 до 10 элементов – это уже олигосахариды, а 11 больше моносахаридов, связанных воедино, образуют полисахариды.
Исследователям впервые удалось получить глюкозу в 1811 году: русский ученый Константин Сигизмунд гидролизовал это вещество из крахмала, а через 33 года другой русский ученый К. Шмидт придумал углеводам их название.
В пище моносахариды представлены 3 веществами: глюкозой, фруктозой, галактозой.
В природе простейшие углеводы обычно представлены в форме глюкозы.
Все они обладают общей формулой – С6Н12О6. И поскольку каждый из них имеет в составе 6 атомов углерода, принадлежат к гексозной группе. Меж тем, несмотря на общую молекулярную формулу, расположение атомов в каждом из этих веществ отличается. Это позволяет называть их структурными изомерами.
Классификация простых углеводов
В современной науке применяют разные классификации для определения типов моносахаридов.
Но для начала важно сказать, что существует две формы этих веществ:
- открытая (оксоформа);
- циклическая.
Моносахариды открытой формы – это вещества, молекула которых состоит из карбонильной и нескольких гидроксильных групп. Это значит, что они могут быть альдегидоспиртами и кетоноспиртами. Отсюда и названия групп – альдозы и кетозы.
Моносахариды циклической формы могут создавать так называемые циклы, замыкаясь в кольца. Этот вид вещества более устойчив, поэтому и в природе они представлены в большем количестве.
Кроме того, моносахариды различают по длине углеродной цепи (количеству атомов углерода). Отсюда и систематизация веществ на триозы, тетрозы, пентозы, гексозы и так далее.
Изомеры моносахаридов
В составе практически всех моносахаридов есть асимметричные атомы углерода. Благодаря этому существуют два оптических стереоизомера – D и L. При этом глицериновый альдегид принято считать исходным веществом для всех моносахаридов. Все последующие трансформирования происходят в результате удлинения его цепей. D и L формы моносахаридов являются зеркальными отражениями друг друга. В природе чаще встречаются «представители» D-формы, а синтетические вещества преимущественно представлены в виде L-варианта. При этом важно сказать, что обе формы обладают разными свойствами.
Биохимические свойства
От функциональных групп моносахаридов зависят и их свойства. Соответственно, они могут вступать в реакции окисления и восстановления.
В результате окисления моносахаридов создаются разные классы кислот. Альдоновые кислоты – последствие окисления альдегидной группы С1 -атома до карбоксильной группы. Альдаровые кислоты возникают после окисления альдегидной группы или первичной спиртовой С6- атома углерода. Альдуроновая кислота создается вследствие окисления первичной спиртовой группы С6-углерода.
Восстановление моносахаридов под воздействием ферментов или других веществ сопровождается образованием полиспиртов, например, сорбитола или рибитола. Последний, кстати, является компонентом витамина В2.
Функции простых сахаров
Моносахариды в первую очередь являются источниками энергии. Большинство из них, как и другие углеводы, в 1 грамме вещества содержат примерно 4 килокалории.
Мозгу же для адекватного функционирования требуется не меньше 160 г этого сладкого вещества.
Моносахариды не принадлежат к числу незаменимых для организма питательных веществ, однако каждый из представителей «вида» важен для человека своими уникальными функциями. Глюкоза, к примеру, это основное топливо для клеток организма. Фруктоза участвует в метаболических процессах. А галактозу обнаружили в эритроцитах у лиц с третьей группой крови. Моносахарид рибоза является частью дезоксирибонуклеиновой кислоты в хромосомах.
Моносахариды и сахар в крови
Моносахариды, как и большинство других питательных веществ, всасываются организмом на уровне тонкой кишки. Они могут быть поглощены без предварительной ферментации и расщепления. Более того, все остальные, более сложные углеводы организм «проглатывает» в форме моновеществ. Глюкозу и галактозу человек усваивает легче и быстрее, чем другие углеводы, а для поглощения фруктозы организму требуется больше времени и сил, при этом она всасывается не полностью. После потребления глюкоза и галактоза быстро попадают в кровь и резко повышают уровень сахара, поскольку обладают высоким гликемическим индексом. В это же время фруктоза, благодаря низкому гликемическому показателю, повышает сахар в крови медленнее и мягче.
В роли питательных веществ
Моносахариды в качестве питательных веществ используются в натуральной и полуискусственной формах.
Но все они играют роль основной «подкормки» для мозга, клетки которого без достаточного количества сахаров не смогли бы правильно работать.
В природе натуральные моносахариды – это:
- глюкоза (декстроза);
- фруктоза;
- галактоза;
- манноза;
- рибоза;
- дезоксирибоза.
Все они являются гексозами, то есть состоят из 6 атомов углерода.
Полуискусственные моносахара
Гексозы (содержат 6 атомов углерода):
- D и L-аллоза;
- D и L-альтроза;
- D и L-фукоза;
- D и L-гудоза;
- D-сорбоза;
- D-тагатоза.
Пентозы (содержат 5 атомов углерода):
- D и L-арабиноза;
- D и L-ликсоза;
- рамноза;
- D-рибоза;
- рибулоза и ее синтетическая форма;
- D-ксилоза (древесный сахар).
Тетрозы (содержат 4 атома углерода):
- D и L-эритроза;
- эритрулоза;
- D и L-треоза.
Примеры продуктов, содержащих моносахариды:
- фрукты и фруктовые соки (глюкоза, фруктоза);
- мед (глюкоза, фруктоза);
- сиропы (глюкоза, фруктоза);
- десертные вина (глюкоза, фруктоза);
- напитки (безалкогольные, энергетики, ликеры), шоколад, молочные десерты (в основном глюкоза).
Характеристика пищевых моносахаров
Глюкоза
Название этого моносахарида с древнегреческого обозначает «сладкий», а в химии глюкоза известна также под названием «виноградный сахар». Содержится в виноградном соке, фруктах, а также есть в крови. Это вещество с формулой С6Н12О6 представляет собой сладкие белые кристаллы, которые довольно легко растворяются в воде.
Этот вид моносахара считается наиболее важным в природе. Глюкоза – составляющий элемент дисахаридов и полисахаридов. В природных условиях образуется в результате фотосинтеза. Также производится из полисахаридов, таких как целлюлоза и крахмал, в результате гидролиза и ферментирования. В процессе ферментирования глюкозы образовываются диоксид углерода и этиловый спирт. И эта способность характерна для всех углеводов, так как в результате позволяет крови транспортировать сахара ко всем клеткам организма. В человеческом организме играет роль поставщика энергии. Является важнейшим веществом для работы мышц.
Фруктоза
Свое второе название – «плодовый, или фруктовый сахар» – фруктоза получила из-за того, что содержится преимущественно в ягодах и фруктах. А вот химики называют это вещество левулозой. Является компонентом сахарозы и лактулозы. И хоть во многих плодах фруктоза содержится в паре с глюкозой, но плодовый сахар является более сладким веществом. Также он входит в состав меда. И что интересно, это единственный вид сахаров, содержащийся в сперме человека и быка.
Главное отличие фруктозы от глюкозы – в неустойчивости к щелочным и кислым растворам. Активно применяется для производства мороженого, как вещество, предотвращающее песчанистость. Употребляемая в больших количествах, вызывает расстройство пищеварения. А также увеличивает концентрацию липидов в крови, что, как полагают, является фактором риска развития кардиологических болезней.
Галактоза
Как правило, она, не встречается в природе, но гидролизуется из лактозы, которая содержится в молоке. Хотя галактоза не так активно растворяется в воде и является менее сладким веществом, чем глюкоза, она имеет ряд других преимуществ. В частности, образует гликолипиды и гликопротеины, которые содержатся во многих тканях.
Моносахарид галактоза представлен сразу в двух формах: циклической и ациклической. Содержится в тканях растений, а также является элементом некоторых полисахаридов, в том числе и бактериальных. Посему нередко становится участником процессов брожения и трансформации в так называемые лактозные дрожжи. В человеческом организме представлена в составе лактозы (молочный сахар) и некоторых других веществ. В результате химических реакций легко трансформируется в глюкозу, что помогает более легкому усваиванию углерода. Также при определенных обстоятельствах способна переходить в галактуроновую или аскорбиновую кислоту. В женском организме галактоза может воспроизводиться из глюкозы, чтобы дальше трансформироваться в лактозу, содержащуюся в молочных железах.
Наличие галактозы обнаружено в молоке, помидорах и многих других овощах и фруктах. В пищевой промышленности галактоза активно используется в качестве активного ингредиента энергетических напитков.
Галактоза обладает разными уникальными свойствами. В частности, она способствует более быстрой потери и затем удержанию веса, служит профилактическим средством против диабета у взрослых. Также является стабильным источником энергии для спортсменов и работающих физически.
Учитывая уникальные возможности галактозы, исследователи все чаще называют ее «сахаром новой эпохи», хотя и признаются, что многое о свойствах этого вещества пока не знают.
Потребность в моносахаридах
Обычно более всего в достаточном потреблении моносахаридов нуждаются люди работающие тяжело физически или умственно, а также спортсмены. Дети, в период интенсивного роста, люди с психическими нарушениями, депрессиями, болезнями пищеварительного тракта, слишком малым весом и во время интоксикации также нуждаются в «сладеньком».
А вот кому стоит более тщательно считать калории и потребление углеводов в сутки, так это лицам с ожирением разных стадий, гипертоникам, пожилым, а также ведущим малоподвижную жизнь.
Кроме того, моносахариды необходимы людям с дефицитом кальция и витамина С, так как эти углеводы помогают усвоению названных полезных веществ.
Понять, что организм испытывает нехватку моносахаридов можно по сниженному сахару в крови, резкому похудению, депрессивных состояниях, а также непокидающему чувству голода. Наоборот, сигналом к уменьшению сладких порций служат дистрофия печени, признаки гипертонии и кислотно-щелочной дисбаланс. Также не стоит злоупотреблять сахарами людям с непереносимостью молочного.
Моносахариды – важная часть нашего ежедневного питания. Они необходимы человеку для пополнения жизненных сил, хорошего настроения и правильной работы мозга. Так позаботьтесь о том, чтобы эти вещества присутствовали в вашем рационе.
Источники
- Ю. С. Шабаров, Т. С. Орецкая, П. В. Сергиев. – Моно- и дисахариды (учебное пособие для студентов III курса), Часть I, 5-е издание, Москва, МГУ им. М. В. Ломоносова, 2010 г. – 82 с.
- Ю. С. Шабаров, Т. С. Орецкая. – Моно- и дисахариды (учебное пособие для студентов III курса), Часть II, 5-е издание, Москва, МГУ им. М. В. Ломоносова, 2010 г. – 86 с.
Больше свежей и актуальной информации о здоровье на нашем канале в Telegram. Подписывайтесь: https://t.me/foodandhealthru
Автор статьи:
Извозчикова Нина Владиславовна
Специальность: инфекционист, гастроэнтеролог, пульмонолог.
Общий стаж: 35 лет.
Образование: 1975-1982, 1ММИ, сан-гиг, высшая квалификация, врач-инфекционист.
Источник