Частота рабочего цикла шим

График, иллюстрирующий применение трёхуровневой ШИМ для управления электродвигателем, которая используется в приводах асинхронных электродвигателей с переменной частотой. Напряжение от ШИ-модулятора, подаваемое на обмотку машины изображено синим (V). Магнитный поток в статоре машины показан красным (B). Здесь магнитный поток имеет приблизительно синусоидальную форму, благодаря соответствующему закону ШИМ
Широ́тно-и́мпульсная модуля́ция (ШИМ, англ. pulse-width modulation (PWM)) – процесс управления мощностью методом пульсирующего включения и выключения потребителя энергии. Различают ана́логовую ШИМ и цифрову́ю ШИМ, дво́ичную (двуху́ровневую) ШИМ и трои́чную (трёхуровневую) ШИМ[1].
Причины применения ШИМ[править | править код]
Основной причиной применения ШИМ является стремление к повышению КПД при построении вторичных источников питания электронной аппаратуры и в других узлах, например, ШИМ используется для регулировки яркости подсветки LCD-мониторов и дисплеев в телефонах, КПК и т. п.
Тепловая мощность, выделяемая на ключе при ШИМ[править | править код]
В ШИМ в качестве ключевых элементов используют транзисторы (могут быть применены и другие полупроводниковые приборы) работающие не в линейном, а в ключевом режиме, то есть транзистор всё время либо разомкнут (выключен), либо замкнут (находится в состоянии насыщения). В первом случае транзистор имеет очень высокое сопротивление, поэтому ток в цепи весьма мал, и, хотя всё напряжение питания падает на транзисторе, выделяемая на транзисторе мощность очень мала. Во втором случае сопротивление транзистора крайне мало, и, следовательно, падение напряжения на нём близко к нулю, при этом выделяемая мощность также мала. В переходных состояниях (переход ключа из проводящего состояния в непроводящее и обратно) мощность, выделяемая в ключе, значительна, но так как длительность переходных состояний крайне мала по отношению к периоду модуляции, то средняя мощность потерь на переключение оказывается незначительной:
Принцип работы ШИМ[править | править код]
Реализуемый в контроллерах широтно-импульсный модулятор состоит из двух блоков: линейного интегратора (И-звена) и трехпозиционного релейного элемента. Установленными при изготовлении изделия параметрами схемы являются: постоянная времени И-звена Ти и уровень сигнала на выходе релейного элемента ±А.
Широтно-импульсный модулятор генерирует последовательность импульсов со скважностью, пропорциональной уровню сигнала на его входе. Параметр его настройки, то есть минимальная длительность импульса, устанавливается с помощью зоны нечувствительности релейного элемента широтно-импульсного модулятора[2].
Аналоговая ШИМ[править | править код]
Один из методов двухуровневой ШИМ с помощью аналогового компаратора. На один из входов компаратора подаётся пилообразное напряжение от вспомогательного генератора, на другой вход – модулирующее напряжение. Состояние выхода компаратора – ШИ-модуляция. На рисунке: сверху – пилообразный сигнал и модулирующее напряжение, снизу – результат ШИМ
ШИМ-сигнал генерируется аналоговым компаратором, на один вход (по рисунку – на инвертирующий вход компаратора) которого подаётся вспомогательный опорный пилообразный или треугольный сигнал, значительно большей частоты, чем частота модулирующего сигнала, а на другой – модулирующий непрерывный аналоговый сигнал. Частота повторения выходных импульсов ШИМ равна частоте пилообразного или треугольного напряжения. В ту часть периода пилообразного напряжения, когда сигнал на инвертирующем входе компаратора выше сигнала на неинвертирующем входе, куда подается модулирующий сигнал, на выходе получается отрицательное напряжение, в другой части периода, когда сигнал на инвертирующем входе компаратора ниже сигнала на неинвертирующем входе – будет положительное напряжение[3].
Аналоговая ШИМ применяется в усилителях низкой частоты класса «D».
Цифровая ШИМ[править | править код]
В двоичной цифровой технике, выходы в которой могут принимать только одно из двух значений, приближение желаемого среднего уровня выхода при помощи ШИМ является совершенно естественным. Схема настолько же проста: пилообразный сигнал генерируется N-битным счётчиком. Цифровые устройства (ЦШИП) работают на фиксированной частоте, обычно намного превышающей реакцию управляемых установок (передискретизация). В периоды между фронтами тактовых импульсов выход ЦШИП остаётся стабильным, на нём действует либо низкий уровень, либо высокий, в зависимости от выхода цифрового компаратора, сравнивающего значение счётчика с уровнем приближаемого цифрового сигнала V(n). Выход за много тактов можно трактовать как череду импульсов с двумя возможными значениями 0 и 1, сменяющими друг друга каждый такт T. Частота появления единичных импульсов получается пропорциональной уровню приближаемого сигнала ~V(n). Единицы, следующие одна за другой, формируют контур одного, более широкого импульса. Длительности полученных импульсов переменной ширины ~V(n) кратны периоду тактирования T, а частота равна 1/(T*2N). Низкая частота означает длительные, относительно T, периоды постоянства сигнала одного уровня, что даёт невысокую равномерность распределения импульсов.
Описанная цифровая схема генерации подпадает под определение однобитной (двухуровневой) импульсно-кодовой модуляции (ИКМ). 1-битную ИКМ можно рассматривать в терминах ШИМ как серию импульсов частотой 1/T и шириной 0 либо T. Добиться усреднения за менее короткий промежуток времени позволяет имеющаяся передискретизация. Высоким качеством обладает такая разновидность однобитной ИКМ, как импульсно-плотностная модуляция (англ.)русск., которая ещё именуется импульсно-частотной модуляцией.
Восстанавливается непрерывный аналоговый сигнал арифметическим усреднением импульсов за много периодов при помощи простейшего фильтра низких частот. Хотя обычно даже этого не требуется, так как электромеханические составляющие привода обладают индуктивностью, а объект управления (ОУ) – инерцией, импульсы с выхода ШИМ сглаживаются и ОУ, при достаточной частоте ШИМ-сигнала, ведёт себя как при управлении обычным аналоговым сигналом.
В цифровой ШИМ период делится на части, которые заполняются прямоугольными подымпульсами. Средняя величина за период зависит от количества прямоугольных подымпульсов. Цифровая ШИМ – приближение бинарного сигнала (с двумя уровнями – вкл/выкл) к многоуровневому или непрерывному сигналу так, чтобы их средние значения за период времени были бы приблизительно равны.
Формально это можно записать так:
где – входной сигнал в пределах от t1 до t2; – продолжительность i -го ШИМ подымпульса, каждого с амплитудой A.
n выбирается таким образом, чтобы за период разность суммарных площадей (энергий) обеих величин была меньше допустимой:
Управляемыми «уровнями», как правило, являются параметры питания силовой установки, например, напряжение импульсных преобразователей /регуляторов постоянного напряжения/ или скорость электродвигателя. Для импульсных источников x(t) = Uconst стабилизации.
В цифровой ШИМ прямоугольные подымпульсы, заполняющие период, могут стоять в любом месте периода, на среднюю величину за период влияет только их количество. Например, при разбиении периода на 8 частей последовательности 11110000, 11101000, 11100100, 11100010, 11100001 и др. дают одинаковую среднюю за период величину, но отдельно стоящие «1» ухудшают режим работы ключа (транзистора).
В качестве ШИМ можно использовать даже порт. Так как 0 передаётся как 0 0000 0000 1 (8 бит данных + старт/стоп), а 255 как 0 1111 1111 1, то диапазон выходных напряжений – 10-90 % с шагом в 10 %.
Управление многоуровневыми синусоидальными ШИМ (СШИМ)[править | править код]
Напряжение на участке инвертора.(а) Выходное напряжение с применением СШИМ. (b) Выходное напряжение с добавлением синусоидальной третьей гармоники
Несколько методов были разработаны для сокращения искажения в многоуровневых инверторах, на основе классического СШИМ с треугольным носителем. Некоторые методы используют расположение источника, другие используют сдвиг фазы из нескольких несущих сигналов . Рисунок справа показывает типичное напряжение, сгенерированное одной секцией инвертора путем сравнения синусоидального сигнала с треугольным несущим сигналом.
Множество Nc-каскадов в одной фазе с их источниками, смещенными на угол θс = 360°/Nc и использующими то же управляющее напряжение, производят напряжение нагрузки с самым маленьким искажением. Этот результат был получен для многоэлементного инвертора в 7-уровневой конфигурацией, которая использует три подключенных последовательно сегмента в каждой фазе. Самое маленькое искажение получено, когда источник смещен на угол в θс = 360°/3 = 120°.
Довольно обыденной практикой в промышленном применении для многоуровневого инвертора является вставка третьей гармоники в каждый сегмент, как показано на Рисунок справа (b), для увеличения выходного напряжения. Ещё одна положительная сторона многоуровневого СШИМ-эффективная частота переключения напряжения нагрузки в Nc-количество раз, и частота переключения каждого сегмента, в зависимости от её несущего сигнала. Это свойство позволяет сокращать частоты переключения каждого сегмента, таким образом уменьшая потери на переключении.
Метод опорных векторов (MOB)[править | править код]
Пространственно-векторная диаграмма: (а) для двух-уровневого, (b) трех-уровневого, и (c) пяти-уровневого инвертора
Техника МОВ может быть легко применима для всех многоуровневых инверторов. Рисунок справа показывает векторы пространства для традиционных двух-, трёх- и пятиуровневых инверторов. Эти векторные диаграммы универсальны независимо от типа многоуровневого инвертора. Другими словами, рисунок справа действителен для пятиуровневого зафиксированного на диод, зафиксированного на конденсатор, или расположенного каскадом инвертора. Смежные три вектора могут синтезировать желаемый вектор напряжения путем вычисления рабочего цикла (Tj, Tj+1, и Tj+2) для каждого вектора.
Пространственно-векторные методы ШИМ обычно имеют следующие преимущества: хорошее использование напряжения источника постоянного тока, низкая пульсация и относительно легкая аппаратная реализация цифровым сигнальным процессором (DSP). Эти функции делают его подходящим для высоковольтных и мощных потребителей.
С увеличением количества уровней, существенно увеличиваются перегрузки и сложность переключения . Некоторые авторы использовали разложение пятиуровневой пространственно-векторной диаграммы в две трехуровневые пространственно-векторные диаграммы с фазовым сдвигом, чтобы минимизировать пульсации и упростить управление. Кроме того, простой пространственно-векторный метод был представлен без вычисления рабочего цикла смежных трех векторов.
См. также[править | править код]
- Векторная модуляция – векторная широтно-импульсная модуляция, используемая в силовой электронике.
- SACD – формат аудио дисков, использующий широтно-импульсную модуляцию звукового сигнала.
- Усилитель звуковых частот. Классификация. Класс «D».
Примечания[править | править код]
Ссылки[править | править код]
- Очень простое и доступное описание принципов работы ШИМ от DI HALT на сайте
- Эмуляция графика
Источник
ШИМ, все вокруг говорят про ШИМ. Ну фиг знает – я его не вижу. Что хотите сказать, если понижу яркость дисплея, это как-то будет меня утомлять? Кажется тут есть в чём разобраться!
Сегодня мы объясним как на самом деле работает ШИМ. Узнаем сколько FPS видит человек, а сколько муха. Проведём тесты ШИМ на осциллографе. И, конечно, расскажем как избавиться от ШИМа на Samsung и на iPhone.
Благодарим компанию ЛЛС, предоставившую нам оборудование для теста. Это крутые разработчики и поставщики лазерно-оптического оборудования из Питера.
OLED дисплеи фактически во всём превзошли IPS. Но некоторые люди просто физически не могут пользоваться OLED, ведь они чувствуют усталость глаз, сухость и даже головные боли.
Почему так? Дело в том, что в отличие от большинства IPS-экранов большинство OLED-матриц мерцают. Примерно как дешевые люминесцентные лампы. И это не очень хорошо сказывается на зрении.
Но стоп! Лично у меня нет никаких проблем с OLED-дисплеями, да и мои друзья ходят с OLED и не жалуются.
Действительно, по статистике большинство (примерно 90%) людей не ощущают мерцания OLED-дисплеев. Мы даже провели опрос: Устают ли у Вас глаза от OLED дисплеев? Устают ли у вас глаза от IPS дисплеев? И получили вот такие результаты: примерно четверть – 27% сообщила, что у них глаза устают. Меньшинство, но всё же – четверть!
Тем не менее есть люди, которые не просто чувствуют ШИМ, но даже отчетливо его видят. Как так получается?
ШИМ в кинопроекторах
Чтобы ответить на этот вопрос давайте поговорим про кино. В старых кинопроекторах, в которых еще были бобины с плёнкой, крутили кино со скоростью 24 кадра в секунду.
Так вот, для того чтобы при смене кадров изображение не смазывалось и вы не видели момент перемотки пленки, в этот момент поток света перекрывался. Это приводило к адскому мерцанию, так как изображение постоянно обрывал «черный кадр».
Так как ускорить процесс смены кадров не было технической возможности киноделы придумали другой хак. Они стали перекрывать изображение дважды: не только во время смены кадра, но и когда на экране отображался статический кадр. Ммм. И какой в этом смысл?
Такое чередование изображения и дополнительных “черных кадров” позволяло искусственно увеличить частоту мерцания до 58 раз в секунду. Чего было достаточно, чтобы обмануть мозг. Видя постоянно мелькающую картинку, мозг просто «отключает» восприятия мерцания и мы видим плавную картинку. Кстати в немом кино, где использовалась частота 16 К/с, вообще перекрывали 3 раза и получилось мерцание – 48 раз в секунду.
Сколько мы видим кадров?
Этот невероятный эффект человеческого зрения называется порогом слияния мерцаний и этот порог равен 60 Гц. Это значит, всё что мерцает чаще чем 60 раз в секунду человек будет воспринимать как непрерывное изображение.
Кстати, у собак и кошек этот порог выше – в районе 70-80 Гц, а у мух так вообще 250-300 Гц.
Что же это получается, игровые мониторы 144 Гц и выше – это всё маркетинг? Нет, 60 кадров в секунду – это минимальный порог, при котором человек перестает видеть мерцание.
А люди с натренированным зрением, например, пилоты истребителей на тестированиях различают кадры, появившиеся на 4 мс. Что соответствует 250 кадрам в секунду. К хардкорным геймерам это тоже относится.
На самом деле есть исследования, где люди смогли различить и 480 к/с и даже больше в некоторых условиях.
Но в целом если верить ГОСТАм: Пульсация освещенности свыше 300 Гц не оказывает влияния на общую и зрительную работоспособность. ГОСТ Р 54945-2012
Зачем нужен ШИМ?
Итак, со зрением разобрались. Но зачем вообще мерцают OLED-дисплеи и на какой частоте?
Сначала ответим на вопрос “Зачем?”
Существует два способа регулировки яркости дисплея:
Первый и самый очевидный способ, при помощи понижения напряжения. Чем меньше мы подаем энергии на дисплей, тем меньше он светится.
Именно так регулируется яркость в большинстве IPS-дисплеев в наших смартфонах, ноутбуках и мониторах.
Но почему бы на OLED-дисплеях не делать также? На самом деле можно, и так даже делали раньше. Например в смартфоне LG G Flex 2 использовался именно такой подход. Но есть проблема! На OLED-дисплеях при уменьшении напряжения сильно страдает картинка. Возникает так называемый мура-эффект, более известный как эффект “наждачной бумаги”. Мы подробно рассказывали об этом в материале про OLED.
Поэтому чтобы избежать такой деградации изображения используется второй подход: регулировка яркости при помощи мерцания или ШИМ. ШИМ – это широтно-импульсная модуляция, или PWM по-английски. Это буквально значит – регулировка ширины, ну или длительности, импульса.
Так, стоп, что еще за импульс? Дело в том, что напряжение в дисплеях, использующих ШИМ, не постоянное, а прерывистое. Оно подаётся при помощи вот таких всплесков или импульсов.
Количество импульсов в секунду называется частотой и измеряется в Гц. А время, которое занимает каждый цикл пульсации, называется периодом.
К примеру, возьмем частоту 250 Гц, в этом случае период будет 4 мс. Частота и период – это фиксированные значения, и с изменением яркости дисплея они не меняются. А вот ширина каждого импульса – это как раз то, что мы можем регулировать. Это значение называется рабочим циклом, и он выражается в процентах.
Если рабочий цикл 100%, импульс будет длиться 100% своего периода, то есть 4 мс. Это соответствует 100% яркости дисплея. Если мы сократим ширину имульса до 50% или 2 мс, воспринимаемая яркость дисплея также упадет до 50%. А на яркости 1% фактически 99% будет отображаться просто черный экран, но наше зрение это интерпретирует как просто очень тусклую картинку. Получается, чем меньше яркость дисплея, тем более выражен эффект мерцания. И тем это вреднее для глаз.
Частота ШИМ в разных дисплеях
На самом деле ШИМ используется не только в OLED-дисплеях, но и в IPS. Но в отличие от OLED в IPS-экранах используют очень высокую частоту мерцания, свыше 2000 Гц. Естественно, столь быстрое мерцание не сможет заметить ни человек, ни муха. А значит и глазки уставать не будут.
Например, у Xiaomi Redmi Note 7 – 2336 Гц, а у realme 6 Pro – 2336 Гц.
А какая частота ШИМ в OLED?
Тут всё зависит от конкретной модели, но есть определенные закономерности. Во-первых, желательно чтобы частота ШИМ была кратной частоте обновления дисплея. Потому на 60 Гц или 120 Гц дисплеях, как правило частота ШИМ – 240 Гц, а на 90 Гц дисплеях 360 Гц.
Мы решили убедиться в этом самостоятельно и отправились в Санкт-Петербург. Там ребята из компании ЛЛС подготовили для нас осциллограф с высокоскоростным фотодетектором.
Так мы проверили на ШИМ на iPhone 11 Pro и Pixel 4.
Тесты показали, что iPhone 11 Pro, вопреки общему мнению, немного мерцает даже на максимальной яркости, с частотой 240 Гц. При снижении яркости до 50%, мерцание становится менее выраженным, а значит до этого момента на iPhone используется уменьшение напряжения. Ну а дальше в бой вступает ШИМ. На осциллографе очень хорошо видно, как при снижении яркости уменьшается ширина импульса, а значит увеличивается мерцание.
В Pixel 4 вплоть до 70% яркости мы не обнаружили ШИМа совсем, видно только обновление экрана 90 Гц. А дальше начинается ШИМ с частотой 360 Гц. Но так как частота обновления экрана в Pixel 4 после 40% падает до 60 Гц, видно как каждый четвёртый импульс немного скачет. Это потому что частота обновления не совпадает с частотой модуляции.
Посмотреть частоту ШИМ в других моделях можно на портале notebookcheck.net. Впрочем, некоторые измерения там выглядят сомнительно. Либо на нашем родном IXBT.com, там всё ок с тестами.
- Galaxy S20 – 242.7 Гц
- Galaxy S20 Ultra – 240.4 Гц
- Google Pixel 2 – 245.1 Гц
- Google Pixel 2 XL – 242.7 Гц
- Google Pixel 3a – 271.1 Гц
- Google Pixel 3a XL – 242.7 Гц
- Google Pixel 4 – 367.6 Гц
- Google Pixel 4 XL – 367.6 Гц
- Huawei P30 – 240.4 Гц
- Huawei P30 Pro – 231.5 Гц
- Huawei P40 – 245 Гц
- Huawei P40 Pro – 365 Гц
- iPhone 11 Pro – 290.7 Гц
- iPhone 11 Pro Max – 245.1 Гц
- iPhone XS – 240.4 Гц
- iPhone XS Max – 240.4 Гц
- OnePlus 5T – 242.7 Гц
- OnePlus 6T – 240 Гц
- OnePlus 7 – 200 Гц
- OnePlus 7 Pro – 122 Гц
- OnePlus 7T Pro – 294 Гц
- OnePlus 8 Pro – 258 Гц
- Samsung Galaxy A50 – 119 Гц
- Samsung Galaxy A51 – 242.7 Гц
- Samsung Galaxy A71 – 247.5 Гц
- Samsung Galaxy S10e – 232 Гц
- Xiaomi Mi 10 – 362.3 Гц
- Xiaomi Mi 8 – 238 Гц
- Xiaomi Mi 8 Explorer Edition – 100 Гц
OnePlus 7 Pro:
Samsung Galaxy A50:
На самом деле, частоту мерцания OLED-дисплеев можно увеличить, пусть не до 2000 Гц, но хотя бы до 500 Гц. Кстати, именно такая частота ШИМ была в древнем Windows Phone – Lumia 950. Но это удорожает производство, а так как страдающих людей мало, производители воровать у себя из кармана не готовы.
Кстати, практически все современные LCD-телевизоры тоже ШИМят на частоте 240 Гц. И в теликах этот эффект даже более заметен, чем в телефонах.
Разве что SONY не поскупились установить в свои LCD модели телемоделях контроллеры управления яркостью либо совсем без мерцания, либо с мерцанием на частоте 720 Гц.
Как проверить ШИМ самому?
Но как проверить ШИМ на вашем телефоне, ноутбуке или телевизоре самостоятельно? Если у вас нет под рукой осциллографа с высокоскоростным кремниевым фотодетектором.
На самом деле очень просто! Вам нужно снять экран экран на видео в замедленной съемке 240 к/с или больше. Сейчас почти любой телефон так может. Если на всех значениях яркости вы не увидите мерцания в виде перемещающихся полос. Значит ШИМа нет.
Что такое DC Dimming?
Тем не менее проблема есть и первой её осознал Xiaomi, представив функцию DC Dimming в Black Shark 2 Pro. Эта тема настолько хорошо зашла, что очень быстро подсуетились OnePlus, OPPO и Huawei. И начиная с прошлого года во всех флагманах точно есть DC Dimming.
Само название расшифровывается как Direct Current Dimming, что переводится как затемнение постоянным током. Иными словами в этом случае яркость регулируется как и положено снижением напряжения.
СТОП! Но также нельзя! Картинка же убьется! На самое деле, так нельзя было делать раньше, потому как качество OLED-дисплеев оставляло желать лучшего. Но теперь всё иначе.
Уже давно многие производители стали использовать гибридный способ регулировки яркости. Например на iPhone до 50% яркости используется снижение напряжения, и только потом включается ШИМ. А телефоны с функцией DC Dimming пошли дальше и стали регулировать яркость исключительно снижением напряжения.
Да, включив DC Dimming на низких яркостях могут немного поплыть цвета и появиться шум. Но это совсем не критично.
И тесты показывают, что функция реально работает. Хотя колебания яркости и не сглаживаются полностью, всё равно такой подход позволяет многократно снизить нагрузку на наши с вами глаза.
По нашим замерам на Xiaomi Mi 10 ШИМ с включенным DC Dimming исчезает полностью! А значит ваши глазки смогут отдохнуть.
Убираем ШИМ для всех
Но что делать, если вам DC Dimming не завезли? Например у вас Samsung, который ШИМит даже на 100% яркости, или iPhone который начинает ШИМить на 50%?
На самом деле решение есть и оно программное. Имя ему экранные фильтры!
Android. Например, на любой Android можно поставить программу OLED Saver. Она умеет накладывать полупрозрачный серый фильтр поверх всего изображения. Регулируя прозрачность фильтра, регулируется яркость. Это программа умеет имитировать функцию автояркости. Можно довольно быстро из шторки регулировать прозрачность фильтра и настроить автозапуск после перезагрузки.
Не могу сказать что это очень удобно. Но может быть очень полезно, если любите позалипать в телефон перед сном в темноте.
iPhone. А на iPhone вообще есть специальный режим встроенный в систему. Он называется “понижение точки белого” и прячется в разделе “Универсальный Доступ”. Путь такой: Настройки > Универсальный доступ > Дисплей и размер текста > Понижение точки белого
А чтобы постоянно не лезть в настройки можно назначить включение режима на тройное нажатие кнопки питания с помощью такого пути: Настройки > Универсальный доступ > Быстрая команда.
В iOS14 можно даже назначить тоже самое на постукивание по задней крышке. Но я бы не рекомендовал так делать, будут ложные срабатывания.
Ну и напоследок можно вынести ярлык с этой функцией в пункт управления. Для этого идём в Настройки > Пункт управления и перетаскиваем иконку “Команды для универсального доступа”.
Итоги
Что в итоге? ШИМ, конечно, зло. Хоть я его и не вижу, и мои глаза не устают, эта шутка всё равно напрягает мозг. А с возрастом может появиться и усталость глаз.
С другой стороны, благодаря ШИМ вообще стал возможен прогресс в развитии технологии OLED. Если б его не было сидели бы мы IPS и о всех прелестях классных OLED-дисплеев даже бы и не знали.
Очень надеемся, что DC Dimming станет стандартом и мы забудем о ШИМ в смартфонах и телевизорах точно также, как забыли о нём в настольных мониторах с появлением Flicker Free мониторов от BenQ. Это, кстати, та же самая технология что и DC Dimming.
В основу ролика легла статья с портала deep-review.com и материал Олега Афонина для журнала Хакер. Ребята проделали отличную работу, а мы продолжаем их дело.
И еще раз спасибо компании ЛЛС за оборудование и теплый приём в Питере! Очень приятно вместе с вами делать крутой науч-поп контент. На этом сегодня всё!
Источник